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10 my father,
a quiet man who was always ready to lend a helping hand, offer
advice and just be there when he was needed. His love and
friendship will be greatly missed.
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PREFACE

This book is designed to be used by the newcomer to assembly language pro-
gramming, who has already spent the time required to learn assembly language
programming for the 6502 microprocessor and is now anxious to put his or her new
found knowledge to work.

The book comprises a work that took over six months to write and was totally
produced, from program writing to typesetting, on an Apple II computer. There
are over 50 programs in the book ranging from simple routines to help you input
and output data, to more sophisticated programs that improve on the hardware —
such as the Lowercase Input Driver — and programs that expand the Applesoft
language — such as those in Chapter 8.

In addition, there are many interesting programs that you will find useful in your
day-to-day work with the Apple. These include programs to help recover acciden-
tally erased Applesoft programs, to format program listings and to improve the
interface to your printer, to name a few.

Most of the programs in Chapter 6 were reprinted through the kind permission
of Bob Sander-Cederlof of S-C Software. All of these programs deal with the
generation of sound on the Apple. Bob puts out a monthly newsletter called Apple
Assembly Line which is chock full of useful information for assembly language
programmers. He also sells one of the best assemblers for the Apple, the S-C
Macro Assembler. All of the programs in this book were written on that assembler.
A special 10-byte patch to the assembler was provided by Bob, so that all of the
assembled listings could be written directly to a text file. This file was then read by
the word processing program and incorporated into the text of the book. As a
result, none of the program listings were retyped, and thus you can be confident
that all program listings will run as they are.

The programs in this book will work with the entire Apple II series of com-
puters. There are some changes in the F8 ROM in the //c and //e that make it
slightly incompatible with the II Plus. These occur in the KEYIN2 routine
($FD21). This entry point should not be used and programs should try to use the
KEYIN entry point ($FD1B). All the programs in this book have been designed to
overcome the difficulty posed by the differences in the input software.

These programs have been designed to run under DOS 3.3 although, in general,
with minor changes, they can be used with ProDOS as well. Appendix D provides
information you’ll need to use these programs with ProDOS.

I'd like to say a special word of thanks to Dave Gordon, president of DataMost,

for all the enthusiasm, encouragement and help that he has given me in producing
this book.






Chapter 1
BEFORE YOU GET STARTED

The 6502 microprocessor is probably the most widely used microprocessor in
personal computers. It is found in the Apple Il and Apple /// families of computers,
the PET, CBM and VIC computers from Commodore, the Atari 400 and Atari 800
computers, and a variety of other computers and video games. Because of the
popularity of the 6502, many books have been written on how to program in 6502
assembly language.

With so many books on 6502 assembly language programming already availa-
ble, you might be tempted to ask why another book is needed. That’s easy. Few of
these books are machine specific, and even fewer were written especially for the
Apple computer. In addition, while these books can be helpful in learning the
basics of assembly language programming and familiarizing you with the various
op codes and their mnemonics, they fall short when it comes to supplying the
reader with hard information on how to perform specific tasks in assembly lan-
guage.

This should not be your first book

This book is designed to pick up where the others leave off. Most of the books
that currently exist are designed to be used as a first book in assembly language
programming. This book is designed as a second book. This means that the book
was written with several assumptions in mind.

First, it is assumed that you have already read one of the existing books that
teach 6502 assembly language and that you are familiar with the mnemonics.
Another assumption that is made is that you have, or have access to, an Apple
computer and know how to operate it. Finally, it is desirable that you have an
assembler to use with your Apple.

‘What is an assembler?

For those of you who are not familiar with what an assembler is or does, it is a
program that allows you to write other programs using the assembly-language
mnemonics. Of course, it’s possible to write the program out on paper, convert the
op codes to their hexadecimal equivalents and either enter the program from the
monitor, or POKE it into memory from BASIC, but that is a cuambersome and time
consuming way of doing things. By using an assembler program, we let the com-
puter do all of the hard work. In addition, we gain a lot of flexibility as well as the

1



2 / Chapter 1

ability to make changes easily. Generally, an assembler consists of two major
parts:
(1) an editor that allows you to enter and manipulate your
program listing and descriptive comments, and

(2) a translator that converts the mnemonic codes to machine
code (hexadecimal numbers) and stores the resulting machine
language program in memory, or on tape or disk.

Some assemblers contain a third part, a printer module, that allows you to print
out the program that you entered with mnemonics along side of the machine-
language translation of the mnemonics. However, most assemblers build this capa-
bility into the translator module.

The various modules of the assembler can all be in memory at the same time
(coresident), or they can be loaded in separately as needed. The coresident assem-
bler has the advantage that it works faster. There are probably at least a dozen
assemblers available for the Apple computer, but three of the best are the S-C
Macro Assembler from S-C Software, Merlin from Southwestern Data Systems
and Big MAC from Call A.P.PL.E., which is only slightly less powerful than
Merlin (they were written by the same person), but is a lot less expensive. The
programs in this book were all written with the S-C Macro Assembler.

For those of you who are not too familiar with assemblers, I will explain just a
few of the features of the S-C Assembler that are used here. These may differ
slightly in the way they are implemented on other assemblers. To begin with, there
are pseudo op codes, which are really instructions to the assembler itself. All
pseudo op codes begin with a period. Some of the pseudo op codes that are used in
these programs are:

.OR means ORigin and it tells the assembler where the program that is being
assembled is designed to run in memory. If this location does not conflict with
memory locations used by the assembler, as the program is assembled, the object
code (program) it produces is stored at this location. If no origin address is speci-
fied, it is assumed to be $800.

.TA means Target Address and defines where the program code will be stored as
itis generated by the assembler. This pseudo op code must be used when the origin
of the program conflicts with the memory locations used by the assembler. In
practice, after the code has been assembled, it must by moved, with the Apple’s
block memory move command, to the location in which it is designed to work. If
no target address is specified, it is assumed to be the same as the origin address.

.EQ means EQuate and is used to assign a value to a label. This value may be a
single or a double byte and it may represent an address or data.

.AS means ASCII String and is used to store the binary value of the ASCII
characters that follow it. The string itself must be enclosed in delimiters that the
user can define. I have chosen to use quotation marks for these delimiters. If the
first delimiter is preceded by a minus sign, the hexadecimal code generated will
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have the high bit set (which is used throughout this book). If the minus sign is not
present the high bit will not be set.

.HS means Hex String and is used to enter hexadecimal data, such as may be
found in conversion, or address tables. It assumes the presence of two digits for
every byte.

.DA means DAta and is used to define constants and/or variables.

Frequently in assembly language programs, it is necessary to find the address of
a labelled subroutine. In the programs listed in this book, to define the low byte of
the address the pound sign (#) is used and to define the high byte, the slash (/) is
used. Thus, if COUT equals $FDED, #COUT will return the value $ED, while
/COUT will return the value $FD. One final comment, all lines that start with an
asterisk (*) are considered comment lines by the assembler, and are ignored by it.

As a matter of convention, in this book all hexadecimal (hex) numbers will be
preceded by a dollar ($) sign. Thus $10 is a hexadecimal number which is equal to
16 in decimal and 10 (without the dollar sign) is the decimal number ten.



Chapter 2

GETTING INFORMATION OUT OF
YOUR COMPUTER

Newcomers to assembly language programming often find that printing out text
from an assembly language program is difficult and inconvenient do to. Conse-
quently, they frequently resort to combining machine language and BASIC pro-
grams together so that BASIC can handle the message printing. However, by
developing some standard message printing routines in assembly language, you
will find that it is just as easy to print text from assembly language as it is from
BASIC.

To give you an idea of just how easy things can be, take a look at the program
listing for the SIMPLE MESSAGE PRINTER. The actual program itself (from
$800 to $80D) is only 14 bytes long. The bulk of the memory occupied by this
routine is for the text itself ($80E to $838) which is 43 bytes long, including the
terminating zero byte.

How the SIMPLE MESSAGE PRINTER works

The program starts out by initializing the Y-register to zero in line 1160. This is
used as a pointer to the next character and is incremented by one (line 1200) each
time a character is printed. The character to be printed is fetched when the instruc-
tion in line 1170 is performed. Here, the program is telling the computer to go to the
location to which the label TEXT has been assigned. Now, add the value that is in
the Y-register to this address and load the character that is located at this new
address into the accumulator. This method of loading the accumulator is known as
Indexed Addressing.

To see how this works, let’s take a look at an example. In this program, when the
value in the Y-register is 2, the character that is loaded into the accumulator is ‘T’
whose hexadecimal equivalent is D4. This is because TEXT = $80E and it begins
with two carriage returns (the .HS 8D8D in line 1240). When $2 is added to $80E,
the result is $810. Looking at the listing you can see that the character located at
$810isD4 ora ‘T’.

After the character is loaded into the accumulator, a check is made in line 1180 to
see if the character was a zero. If it was, this is a sign that the end of the text has
been reached and the program then branches, without printing, to label ENDPRT
where an RTS instruction (return from subroutine) is executed, and control is
returned to the calling program or mode.

4
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If the character was not a zero byte, then the COUT ($FDED) subroutine in the
Apple’s ROM is called to print out the character in the accumulator. Upon return-
ing from that subroutine call, the Y-register is incremented by one (line 1200) and a
check is made to see if the value in the Y-register passed 255 and returned to zero. If
it hasn’t, and it shouldn’t, the program branches back to line 1170 and the next
character is fetched.

The message to be printed starts at line 1240 and ends in line 1260 with a BRK
instruction. The BRK was used because when it is assembled it generates a zero
byte. As an alternative .HS 00 could have been used to generate the required zero
byte. The message begins with two carriage returns, followed by the text listed in
line 1250.

Pseudo op codes tell the assembler what to do

Looking carefully at lines 1240, 1250 and also at line 1120, you will notice the
pseudo op codes that we spoke about earlier. These commands do not appear in the
final assembled program: They merely contain instructions to the assembler to
perform certain functions. In line 1120 the .EQ pseudo op code tells the assembler
to assign the address $FDED to the label COUT. In line 1240, the .HS pseudo op
code tells the assembler that all the data that follows should be considered hexade-
cimal data.
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The . AS pseudo op code in line 1250 tells the assembler that the information that
follows, is an ASCII string (text). Most assemblers require that the text be enclosed
by delimiters (quotation marks, slashes, etc). This assembler has an additional
feature in that it allows you decide whether or not you want the high bit of the
character set or not. This is done by the presence or absence of a hyphen, or minus
sign, (-) after the . AS pseudo op code and before the quotation mark. If the hyphen
is present, the high bit is set, if it is absent, the high bit remains a zero.

About high bits and ASCII code

Numbers, letters and certain standard symbols can be represented in the com-
puter by a special code known as ASCII (for American Standard Code for Informa-
tion Interchange - see Appendix A). This code uses 7 bits to code 128 numbers,
letters and symbols. Since there are 8 bits in a byte, there’s one extra bit left over.

The Apple computer uses the eighth (or high) bit to determine whether or not the
character displayed on a video screen will be displayed normally or in a flashing
mode. If the high bit is not set, the character will flash, if it is set it will be displayed

1000 **kkkkkkkk * hekFk *k

1010 *** Tk

1020 *** SIMPLE MESSAGE PRINTER *kk

1030 *** *kk

1040 ** *okkk Kk *hkkhkrhik *

1050 *

1060 *

1070 *

1080 *

1090 *

1100 * EQUATES

1110 *
FDED- 1120 COUT .EQ $FDED

1130 *

1140 *

1150 *
0800- A0 00 1160 LDY #$0 Initialize pointer
0802- B9 OE 08 1170 LOOP LDA TEXT,Y Get character
0805- FO 06 1180 BEQ ENDPRT Done yet?
0807- 20 ED FD 1190 JSR COUT No, print character
080A- C8 1200 INY Increment pointer
080B- DO F5 1210 BNE LOOP Get next character
080D- 60 1220 ENDPRT RTS Return to caller

1230 *

080E- 8D 8D 1240 TEXT .HS 8D8D
0810- D4 C8 C9

0813- D3 A0 C9

0816- D3 A0 D4

0819- C8 C5 A0

081C- D3 C1 CD

081F- DO CC C5

0822- A0 CD C5

0825- D3 D3 C1

0828- C7 C5 A0

082B- D4 CF AO

082E- C2 C5 AO

0831- DO D2 C9

0834~ CE D4 C5

0837- C4 1250 .AS -'""THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
0838- 00 1260 BRK
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normally. A bit is said to be set, or on, when its value is equal to 1 and reset, or off,
when its value is equal to 0.

Tmproving the SIMPLE MESSAGE PRINTER

While the SIMPLE MESSAGE PRINTER can be easily used to output text from
an assembly language program, it does have a major drawback. The program is
what can be referred to as an in-line routine, meaning that every time you want to
print out a message, you have to add another 13 bytes (most of the time you won’t
need the RTS instruction at the end) to your program for the printing routine.
While that might not seem like a lot, you'd be surprised at just how quickly that
adds up.

A more reasonable way to do things is to convert the program into a subroutine
that can be jumped to whenever it is needed. That is exactly what has been done in
the IMPROVED MESSAGE PRINTER. As you can see by glancing at the listing,
the program has been broken down into two major parts: the main program and the
message printing subroutine.

How the IMPROVED MESSAGE PRINTER works

The main program illustrates how the printing subroutine is called. In line 1200
the low-order byte of the address of the label TEXT is loaded into the accumulator,
while in line 1210, the high-order byte of the address of the TEXT label is loaded
into the Y-register. Now that the program knows where the message that we want to
print is located in memory, all it has to do is jump to the message printing subrou-
tine which begins on line 1280.

The first thing that the message printing subroutine does is to store the address of
the text to be printed in a two-byte pointer (low byte first) on zero page. Once that is
done, the Y-register is reset to zero, so that it can be used as a pointer (or index) to
the next character.

One important point you should realize when using this subroutine is that what
ever is in the accumulator and the Y-register before you use this routine will be
destroyed. So if you need that information, you should store it in a temporary
location until you exit the printing routine and then load the values back into their
respective places.

The type of indexed addressing (line 1310) used in the subroutine is slightly
different from that used in the previous program. This method of loading the
accumulator is known as Indirect Indexed Addressing, also sometimes referred to
as Post-Indexing. In this mode, the computer goes to the location indicated by
TXTPTR, which has been defined in line 1130 as location $06 on page zero of
memory, and looks in locations $06 and $07 for the address of the text to be
printed. Once it has this address, it adds to it the value stored in the Y-register to get
the real address that is desired and then loads the accumulator with the information
from that address. The rest of the program is identical to that of the previous one. A
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test is made for a zero byte and if none is found, the character is printed and the next
character is retrieved.

This program is quite useful and as you progress through this book, you will find
that it has been used extensively as a subroutine in other programs. The subroutine
itself is 17 bytes long and requires 7 bytes of code to set up the call to the subrou-
tine. So, it is easy to see that if you have more than 2 messages to print in a
program, it pays to use this program rather than the former one.

1000 ***kkkkhhhhhhdhrrbrrbrhhkrdtrhrhtrhirs

1010 *** *kk
1020 *** IMPROVED MESSAGE PRINTER *kk
1030 *** *hk
1040 **xkkkkkrhkkhkrhkhhkrrhdhkrhhhkhrdkrhrik
1050 *
1060 *
1070 *
1080 *
1090 *
1100 *
1110 * EQUATES
1120 *
0006—- 1130 TXTPTR .EQ $06
FDED- 1140 couT .EQ $FDED
1150 *
1160 *
1170 * This is the main program, which calls
1180 * the message printing subroutine.
1190 *
0800- A9 19 1200 LDA #TEXT Get address low byte.
0802- A0 08 1210 LDY /TEXT Get address high byte.
0804- 20 08 08 1220 JSR MSGPRT Print text.
0807- 60 1230 RTS
1240 *
1250 *
1260 * This is the message printing routine.
1270 *
0808- 85 06 1280 MSGPRT STA TXTPTR Store pointer
080A- 84 07 1290 STY TXTPTR+1 to text.
080C- A0 00 1300 LDY #$0 Init counter.
080E- B1 06 1310 LOOP LDA (TXTPTR),Y Get character.
0810- FO 06 1320 BEQ ENDPRT Done yet?
0812- 20 ED FD 1330 JSR COUT No, print character.
0815- C8 1340 INY Increment counter.
0816- DO F6 1350 BNE LOOP Get next character.
0818- 60 1360 ENDPRT RTS Return to caller.
1370 *

0819- 8D 8D 1380 TEXT .HS 8D8D
081B- D4 C8 C9

081E- D3 A0 C9

0821- D3 A0 D4

0824- C8 C5 A0

0827- D3 C1 CD

082A- DO CC C5

082D- A0 CD C5

0830- D3 D3 C1

0833- C7 C5 A0

0836- D4 CF A0

0839- C2 C5 A0

083C- DO D2 C9

083F- CE D4 C5

0842- C4 1390 .AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
0843- 00 1400 BRK
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Printing very long messages

AsTindicated earlier, you will find that the IMPROVED MESSAGE PRINTER
can be used for most of your text output applications. It is possible however, that
under certain circumstances, you will find that not all of your text is being printed
and there is no apparent reason for it. It’s not really as mysterious as it may seem,
because the two printing routines that we have discussed until now have had one
thing in common, they are limited to a maximum message length of 255 charac-
ters. The reason for this can be found in lines 1340 and 1350 of the IMPROVED
MESSAGE PRINTER program.

In line 1340, the Y-register is incremented. The INY instruction affects the Zero
(or Z) flag bit in the status register, and if the INY operation results in the Y-register
being set equal to zero, the Z flag is set. If the Y-register does not become zero, the
Z flag is reset. In line 1350, the BNE instruction is used to see if the Y-register has
been incremented past 255 and returned to zero (remember the Y-register is an 8-
bit register and can only hold values up to 255).

In most cases, the Y-register never gets to zero and the message printing subrou-
tine is terminated instead by the zero that follows the text. But for text containing
more than 255 characters, the terminating zero that follows the text is never
reached and instead, the Y-register becomes zero and terminates the routine. You
can check this out yourself by simply using the previous program and putting in a
message that is longer than 255 characters.

To overcome this size limitation, instead of using the single byte Y-register as the
text pointer, we must use a two-byte pointer to the text. Such a pointer will techni-
cally enable us to print out up to 65,536 characters. In real life, we must leave some
space in memory for the program and various parts of the Apple’s operating
system. But in essence, a two-byte pointer will let us print out messages of virtually
any length.

The changes required to accommodate a two-byte pointer can be seen in the
listing for Long Message Printer No. 1. The method used to call the printing
subroutine (starting at line 1200) remains the same as that for the previous pro-
gram, as does most of the remainder of the program. The only difference is that the
INY in line 1340 of the previous program has been replaced by three lines of code
that increment TXTPTR instead of the Y-register.

Line 1340 increments the low byte of TXTPTR, while line 1350 checks if this
incrementing has caused this low byte to increment past 255 and back to zero. If it
has, then the high-order byte, TXTPTR + 1, is also incremented by one. In any
case, after adjusting TXTPTR, the program jumps back to LOOP in line 1310
where the next character is fetched.
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0006-
FDED-

0800-
0802-
0804-
0807-

0808-
080A-
080C-
080E-
0810-
0812-
0815-
0817-
0819-
081B-
081D-

081E-
0820-
0823-
0826-
0829-
082C-
082F-
0832-
0835-
0838-
083B-
083E-
0841-
0844
0847-
0848-

1E
08

08

FD

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410
1420

O S e e e e T R e e e e e e e e e

*kk

LONG MESSAGE PRINTER NO. 1 *%*%

FOR GROUPED MESSAGES *kk

*kk

B e s e e S S e T T et e e e e

$FDED

#TEXT
/TEXT
MSGPRT

This is the main program, which calls
the message printing subroutine.

is the messag~ printing routine.

.AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"

TXTPTR
TXTPTR+1
#$0
(TXTPTR) ,Y
ENDPRT
COUT
TXTPTR
LOOP
TXTPTR+1
LOOP

8D8D

H*kk

*k*k

*kk

*k%

*

*

*

*

*

* EQUATES

*

TXTPTR .EQ $06

COUT .EQ

*

*

*

*

*
LDA
LDY
JSR
RTS

*

*

* This

*

MSGPRT STA
STY
LDY

LOOP LDA
BEQ
JSR
INC
BNE
INC
BNE

ENDPRT RTS

*

TEXT .HS

BRK

Another way to print long messages

Save address of TEXT in
TXTPTR and TXTPTR+¥1.
Initialize offset to zero.
Get next character to print.
Done yet?

No, print character.
Increment TXTPTR low byte.

If not zero get next character.
Otherwise increment TXTPTR+1.
Get next character.

Return to caller.

For those of you who firmly believe that ““Variety is the spice of life”’, we have

another method of printing out long messages. This one has a little different

structure than all of the previous programs. Whereas former programs looked at
the label associated with the text to be printed and passed its location to the printing
subroutine, this program doesn’t even require the message to have a label. I've only

left it in for purposes of continuity.
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0006-
FDED-

0800-
0803-
0805-
0808-
080B-
080E-
0811-
0814-
0817-
081A-
081D-
0820-
0823-
0826-
0829-
082C-
082D-
082E-

082F-
0830-
0832-
0833-
0835-
0837-
0839-
083B-
083E-
0841~

0844-
0847-
084A-

084D-
084F-
0851~
0853-

68
85
68
85
AO
B1
FO
20
20
4C

20
20
6C

E6
DO
E6
60

4D
4D
06

06
02
07

FD
08

08
00

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580

*%% *;;
*k%  LONG MESSAGE PRINTER NO. 2 *¥*
Fokk FOR IN-LINE MESSAGES ook
*k% *kk
kkkkkkkkkkhkkkkkkkkkkhhkhkhhkhhhkkhhhhhkikikkx
*

*

*

*

* EQUATES

*

TXTPTR .EQ $06

COUT  .EQ $FDED
*

This is the main program, which calls
the message printing subroutine.

* % o 3k o

JSR MSGPRT Print message that follows.
TEXT .HS 8D8D

.AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
BRK End of message marker.
RTS
*
*
* This is the message printing routine.
*
MSGPRT PLA Pull address of TEXT-1
STA TXTPTR off the stack and save it
PLA in TXTPTR and TXTPTR+1.
STA TXTPTR+1
LDY #$01 Set Y-register to 1.
LOOP LDA (TXTPTR),Y Get next character to print.
BEQ ENDPRT Done yet?
JSR COUT No, print character.
JSR INCPTR Increment TXTPTR by 1.
JMP LOOP Get the next character.
*
*

* The end of the text has been reached
* so increment TXTPTR twice to get the
* correct address to return to.

*

ENDPRT JSR INCPTR
JSR INCPTR
JMP (TXTPTR)

This is where TXTPTR is incremented.

First the low byte is incremented and
if it passes zero as it's incremented,
then the high byte is incremented too.

Sk ok Sk ok 3k o

INCPTR INC TXTPTR
BNE RETURN
INC TXTPTR+1
RETURN RTS
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At first glance, the operation of the program is unclear and it even looks like it is
going to crash right after it returns from its jump to the message printing subrou-
tine, because it looks like it is going to try to execute the text as machine language
instructions. Let me assure you this is not going to happen.

An interesting way to use the stack

Whenever the 6502 microprocessor executes a JSR instruction, as it does in line
1200, the address minus one, of the next instruction to be executed is pushed onto
the stack (which takes up page 1 of memory). Data are pushed onto the stack
starting at $1FF and work their way down to $100. When the JSR in line 1200 is
executed, the microprocessor doesn’t know that what follows the JSR is not an-
other instruction, but just data, so it automatically pushes the address of TEXT-1
onto the stack. The address is pushed onto the stack high byte first, low byte last.

The first thing that the message printing subroutine does is to pull the address off
the stack, low byte first (line 1290) and store it in TXTPTR and TXTPTR + 1. To
compensate for the minus 1, TXTPTR could either be incremented or the Y-
register can be set to 1 instead of 0, which is what was done here (line 1330). This
will not pose us any problems later on because the Y-register always remains the
same. Only TXTPTR and TXTPTR + 1 get incremented.

Inlines 1340 to 1360 the program gets the next character, checks to see if the end
of the message has been reached and prints out the character if it hasn’t. In line 1370
the program jumps to a subroutine that increments TXTPTR and TXTPTR + 1 if
necessary. After that, the program goes back to get the next character.

When the program does detect the end of message marker (the zero byte) it
branches to ENDPRT in line 1450 where TXTPTR is incremented twice. It is
incremented once to get past the BRK instruction, to which it is pointing as it enters
ENDPRT, and incremented a second time to compensate for the -1 associated with
the original address of TEXT. After incrementing it twice, therefore, TXTPTR is
pointing to the instruction immediately following the BRK. This turns out to be the
RTS instruction in line 1240. So on exiting ENDPRT, the program does an indirect
jump through TXTPTR (line 1470) to return to its proper place in the program.

Decimal numbers can be output too

Until now, we’ve seen how we can print out textual information. But what do we
do if we want to print out some numbers that were generated by our machine
language program and reside in memory in a hexadecimal form? If we wanted to
print out the number in hexadecimal, all we’d have to do is to load the byte(s) into
the accumulator and then jump to the PRBYTE routine in the Apple monitor
ROM, located at SFDDA.. But, if we want to print the hexadecimal number out as a
decimal number, which most of us are more familiar with, then we have to do some
sort of number conversion. Both the 6502 microprocessor and the Apple system
are very versatile, and you will quickly realize that there is more than one way to
write an assembly language program. To illustrate this point, the next three pro-
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gram will all perform the same task: printing out the decimal equivalent of a two-
byte hexadecimal number. If you look carefully at the previous sentence, you’ll
notice that I indicated that the task was printing out the decimal equivalent and not
necessarily converting to the decimal equivalent. The distinction will be made
clear shortly when we look at the first of the three programs.

The heart of this first program is a short routine that Steve Wozniak, one of the
founders of Apple, wrote a few years ago and was published in the San Francisco
Apple Core’s Cider Press Magazine. Normally, when converting an integer from
one base to another, the integer is repeatedly divided by the desired base. The
remainder of each division becomes successively more significant digits of the
answer. The process continues until the base can no longer be divided into the
argument. To illustrate how this works let’s convert 32 in decimal to its hexadeci-
mal equivalent.

32/16 =2 with a remainder R=0
2/16=0andR=2

Before you get excited and say that 2/16 is .125, remember that we are dealing
with integer numbers only, no fractions. So if a result is less than 1, it’s set equal to
zero and a remainder. Earlier we said that as the division progresses, the remain-
ders become successively more significant digits of the answer. This means that
the last remainder (2) is the most significant digit of the answer. Hence, 32 decimal
is equal to $20 hexadecimal.

The process works in the reverse direction just as well. Let’s convert $20 hex
back to its decimal equivalent.

$20/$A =$3and R=2

$3/$A=%$0and R =3

Here we divide $20 by the base we wish to convert to, which is 10 decimal or $A
in hexadecimal. Once again, by taking the last remainder as our most significant
digit and reading back we find that $20 hex is equal to 32 decimal, which is really
no great surprise.

A shorter and faster conversion method can be implemented on microproces-
sors that have a decimal mode, such as the 6502. In this program, the two-byte hex
number that is to be converted is stored on page zero in locations $50 and $51
which are known as LINNUM and LINNUM + 1. The answer, in binary coded
decimal (BCD) form is stored in location TEMP and the two locations that follow
it. These are located from $6 to $8 on page 0 of memory. TEMP contains the lowest
order digit and TEMP + 2 the highest order.

For those of you who are unfamiliar with just what a binary coded decimal is, let
me explain. If from BASIC you typed POKE 0,32 and then you went into monitor
mode and looked at location 0, you'd find the hexadecimal number $20 there,
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which we already know is the hex equivalent of 32. However, if I had a program
that converted $20 to decimal and stored the digits 3 and 2 as a single byte in a
single memory location, I would have a binary coded decimal. So, if from the
monitor you were to type 0:32 and then a press RETURN, you could say that you
stored 32 as a binary coded decimal into location zero. Having done this, you can
now use the Apple’s monitor routine PRBYTE to print the byte out to the screen.

Thus if you load the accumulator with 32 and do a JSR to PRBYTE ($FDDA),
the number 32 will appear on you screen. You can see therefore, that we can
convert a number to BCD and then use the PRBY TE routine to display it. As far as
the viewer is concerned, he is seeing a decimal number, even though if he looked in
memory he would actually see BCD numbers. The advantage to using BCD num-
bers is that they require less memory. A 5-digit decimal number requires 5 mem-
ory locations, one for each digit. The same number in BCD form only requires 2.5
memory locations because 2 digits are packed into every byte. Thus the number
65535 would be represented in BCD as the three bytes 06 55 35. In our program,
these numbers are stored in memory in reverse order: 35 55 06.

In the program, OUTPUT A DECIMAL NUMBER #1, the section of code
from 1280 to 1450 converts the two-byte hex number in LINNUM to its BCD
equivalent. Lines 1280 to 1300 clear the two low order bytes of the answer. The
high order byte does not have to be cleared because any data stored there will be
shifted out automatically during the calculation. In line 1310, a flag is initialized to
zero. The flag will be used to determine whether or not a zero that is to be printed
out is a leading zero. This is done to enable us to suppress leading zeroes so we
don’t get 065535 instead of 65535, which is what we really want.

The next thing that is done is to switch the 6502 into its decimal arithmetic mode
in line 1320. In line 1330, we are setting up a loop that will be performed 16 ($10)
times. Within this loop, the numbers in LINNUM and LINNUM + 1 will be
shifted left, pushing the most significant bit into the carry. Then, the values in
TEMP, TEMP + 1 and TEMP + 2 are doubled and the carry is added to them.

The low and middle order bytes are doubled by adding each byte to itself (lines
1360 to 1410). The high order byte is doubled by shifting its contents left once (line
1420). By doing this, there is no need to initialize TEMP + 2 to zero at the begin-
ning, because the original contents will be shifted out during execution.

This entire process (lines 1340 to 1440) is performed 16 times to convert both
hex bytes into 5 BCD digits. When the calculations are done, it is very important to
return the 6502 microprocessor to its hexadecimal calculation mode by executing
the CLD (clear decimal mode) instruction. Otherwise the remainder of the pro-
gram will not work properly.

Once the conversion has been completed, the program then proceeds to print out
the numbers. Since most of us are not used to seeing numbers with leading zeroes,
I’'ve included routines that check to see if a zero that is a candidate for being printed
is a leading zero and if it is, to skip it and get the next digit.

The routine starting at line 1580 sets up a loop that retrieves the three BCD bytes.
As a byte is loaded into the accumulator (line 1600), a check is made to see if its
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value is zero. If it is, a second test is performed to see if this is the first digit to be
printed. If it is the first digit, LZFLAG will be 0 otherwise it will contain some
nonzero value. If a zero byte is the first byte to be printed, the byte is discarded (line
1630) and the program jumps back to line 1590 to get the next byte.

If the whole byte is not equal to zero, a test is made (at lines 1720 and 1730) to see
if the most significant digit (nibble) of the byte is zero. (NOTE: This will always be
the case with the byte at TEMP + 2.) Ifit’s not, then LZFLAG is set to indicate that
a digit has already been printed, the complete original byte is retrieved (we had to
modify it to do our test) and the byte is printed.

On the other hand, if the most significant nibble of the byte is zero, then the
program jumps to line 1990 to find out if a byte has already been printed. If one has
then this one is also printed. If nothing has been printed yet, the original byte (with
its leading zero) is retrieved and stored in LZFLAG to make it nonzero, and then
the right most, or least significant digit of the byte is printed using the PRHEX
routine in the Apple ROM. Finally, in line 2100 the V flag of the status register is
cleared and in line 2110 a branch on V clear instruction is executed. This causes the
program to branch back to line 1820 and check to see if there are anymore digits to
be printed.

Branching instead of jumping

Instead of using the CLV and BVC op codes in 2100 and 2110, we could simply
have put in a JMP instruction. However, I wanted you to see how it’s possible to
implement a function — branch always — that does not exist in the 6502. Other
microprocessors, such as the 6800 and the 65C02, have a BRA instruction which
unconditionally branches to the desired location.

Inthe Apple, the V flag of the status register is very rarely used, so it’s generally

fairly safe to clear it and then execute a BVC instruction. Here’s the listing of the
program we have been discussing.

1000 **kkkxkihrkk *kkkkdkkkkhkkkk *

1010 *** *kk

1020 *** QUTPUT A DECIMAL NUMBER # 1 *%%
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER Ly
1060 *** ALL RIGHTS RESERVED Fkk
1070 *** *kk
1080 ***kkkkhkkkkhhkkrhhkrrrhhhkhhhhkkihhhk
1090 *
1100 *
1110 * EQUATES
1120 * '

0006- 1130 TEMP .EQ $6

0009- 1140 LZFLAG .EQ $9

0050- 1150 LINNUM .EQ $50

FDDA- 1160 PRBYTE .EQ $FDDA

FDE3- 1170 PRHEX .EQ $FDE3
1180 *
1190 *
1200 * This section of code converts a
1210 * 2-byte unsigned binary argument in
1220 * LINNUM and LINNUM+1 to a binary coded
1230 * decimal number packed into 3 adjacent
1240 * locations starting at TEMP, low byte
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0800- A9
0802- 85
0804- 85
0806- 85
0808- F8
0809- A0
080B- 06
080D- 26
080F- A5
0811- 65
0813- 85
0815- A5
0817- 65
0819- 85
081B- 26
081D- 88
081E- DO
0820- D8

0821- A2
0823- CA
0824- B5
0826- DO
0828- C5
082A- FO
082C- DO

082E- 48
082F- 29
0831- FO
0833- 85
0835- 68
0836- 20

0839- EO
083B- DO
083D- 60

FO
09
DA

00
E6

FD

1250 * first. This conversion routine was
1260 * written by Steve Wozniak.

1270 *

1280 LDA #$0

1290 STA TEMP Clear result

1300 STA TEMP+1

1310 STA LZFLAG Clear leading 0 flag.
1320 SED Set decimal mode.
1330 LDY #$10 Set for 16 bits
1340 LOOP ASL LINNUM Shift bit out

1350 ROL LINNUM+1 of binary argument.
1360 LDA TEMP

1370 ADC TEMP

1380 STA TEMP

1390 LDA TEMP+1 Double decimal

1400 ADC TEMP+1 result and add carry.
1410 STA TEMP+1

1420 ROL TEMP+2 Shift last bit

1430 DEY

1440 BNE LOOP Repeat 16 times.
1450 CLD Clear decimal mode.
1460 *

1470 * .

1480 * This section contains the loop that
1490 * fetches each of the 3 bytes that

1500 * contain the packed binary-coded

1510 * decimal number and checks to see if
1520 * both numbers in the byte are zero.

1530 * If they are, a further check is made
1540 * to see if this is the first byte to
1550 * be printed, in which case the whole
1560 * byte is discarded.

1570 *

1580 LDX #$3 Count 3 bytes.

1590 NEXT DEX

1600 LDA TEMP,X Get a byte.

1610 BNE CHKLDO Check for leading zero.
1620 CMP LZFLAG Yes, is it the first?
1630 BEQ NEXT Yes, discard.

1640 BNE PRINT2 No, print the byte.
1650 *

1660 *

1670 * This section checks to see if the

1680 * byte being processed contains a

1690 * leading zero.

1700 *

1710 CHKLDO PHA Save the accumulator.
1720 AND #$FO Leading zero?

1730 BEQ LEADO If zero, process it.
1740 STA LZFLAG It's not so set flag.
1750 PRINT1 PLA Restore accumulator.
1760 PRINT2 JSR PRBYTE Print byte in accumulator.
1770 *

1780 *

1790 * Here the program checks to see if

1800 * there is anymore data to output.

1810 *

1820 CHKDON CPX #$0

1830 BNE NEXT

1840 RTS

1850 *

1860 *

1870 * This routine checks to see if the

1880 * byte containing the leading zero is
1890 * the first byte to be output. If it
1900 * is it throws away the zero and prints
1910 * a single digit. If it isn't, it

1920 * restores the byte (which has been

1930 * destroyed by the testing) and prints
1940 * it out. The leading zero flag is

1950 * also set here so that the program

1960 * will know it doesn't have to worry

1970 * about them any more.
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1980 *
083E- A5 09 1990 LEADO LDA LZFLAG First digit?
0840- DO F3 2000 BNE PRINT1 No, print it.
0842- 68 2010 PLA Yes, set flag.
0843- 85 09 2020 STA LZFLAG
2030 *
2040 *
2050 * This section takes a byte with a
2060 * leading zero and prints it out as a
2070 * single digit without the leading zero
2080 *
0845- 20 E3 FD 2090 JSR PRHEX Print 1 digit
0848- B8 2100 CLV Relative jump
0849- 50 EE 2110 BVC CHKDON always taken.

As I mentioned earlier, while the previous program will print out decimal num-
bers to the screen, it doesn’t actually generate them as five individual bytes. In
some cases, it is desirable to generate the ASCII equivalent of each of the individ-
ual digits. To produce numbers on the Apple in normal mode, the digits should be
in the $BO to $B9 range (for 0 to 9).

By using the same conversion routine we used in the previous program, we can
quickly write a new program that will generate the ASCII code for each individual
digit. The first part of this new program (lines 1290 to 1460) is identical to the
routine in lines 1280 to 1450 of the previous program. After the conversion to a
binary-coded decimal has been made, all we have to do is retrieve the individual
digits that have been packed into three bytes starting at TEMP, and OR them with
the hex value $B0 to make them ASCII. This is what happens starting at line 1550
in the second program that outputs decimal numbers.

Separating the nibbles

Indexed addressing with the X-register (line 1560) is used to retrieve the BCD
data, least significant byte first. The first thing that is done is to separate the two
digits that have been combined to form a single byte, into individual bytes. In line
1570 the least significant digit of the byte is extracted by zeroing out the most
significant digit. So, if the BCD value of a byte was $13 and we ANDed it with $OF,
we’d get:

00010011 =$13
00001111=$OF
00000011=$03

This value is then ORed in line 1580 with $BO to produce the ASCII value and
the newly converted digit is temporarily stored on the stack (line 1590) until all
digits have been processed and we’re ready to print them.

The next thing to do is to retrieve the high order digit of the same byte. So, we
reload that byte into the accumulator (line 1600) and then perform the logical shift
right (LSR) instruction four times (lines 1610 to 1640). What this does is to move
the most significant digit of a byte into the least significant position while at the
same time storing a zero in the most significant digit. So, for the same byte
containing the binary coded number $13, we get:
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Separating the nibbles of a byte.

Lst shift 2nd shift 3rd shift “4th shift
00010011—00001001—00000100—00000010— 00000001

Once this operation is completed, that value in the accumulator is ORed with
$BO (line 1650) and so another ASCII digit is created and temporarily stored on the
stack. This operation continues until all 6 digits (including the leading zero) in the
three bytes are converted.

After all of the ASCII numbers have been stored on the stack, they are pulled off
one at a time (line 1790), a check is made to see if the number is a leading zero and
if it’s not the number is printed using the Apple’s standard output routine COUT
($FDED). After all of the numbers have been pulled off the stack and printed, the
program executes an RTS instruction, returning control to the calling program or
mode.
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1000 ****kxx*k *hkkkkkk Fhkkkk *
1010 *** kK
1020 *** QUTPUT A DECIMAL NUMBER # 2 **%
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *kk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *hk
1080 **k**k kkkkkkrkkihk kkkdkkkkk
1090 *
1100 *
1110 * EQUATES
1120 *
0006- 1130 TEMP .EQ $6
0009- 1140 LZFLAG .EQ $9
0018- 1150 YSAVE .EQ $18
0050- 1160 LINNUM .EQ $50
FDED- 1170 couT .EQ $FDED
1180 *
1190 *
1200 * This section of code converts a
1210 * 2-byte unsigned binary argument in
1220 * LINNUM and LINNUM+1 to a binary coded
1230 * decimal number packed into 3 adjacent
1240 * locations starting at TEMP, low byte
1250 * first. This conversion routine was
1260 * written by Steve Wozniak.
1270 *
1280 *
0800- A9 00 1290 LDA #$0
0802- 85 06 1300 STA TEMP Clear result
0804- 85 07 1310 STA TEMP+1
0806- 85 09 1320 STA LZFLAG Clear leading 0 flag.
0808- F8 1330 SED Set decimal mode.
0809- A0 10 1340 LDY #$10 Set for 16 bits
080B- 06 50 1350 LOOP ASL LINNUM Shift bit out
080D- 26 51 1360 ROL LINNUM+1 of binary argument.
080F- A5 06 1370 LDA TEMP
0811- 65 06 1380 ADC TEMP
0813- 85 06 1390 STA TEMP
0815- A5 07 1400 LDA TEMP+1 Double decimal
0817- 65 07 1410 ADC TEMP+1 result and add carry.
0819- 85 07 1420 STA TEMP+1
081B- 26 08 1430 ROL TEMP+2 Shift last bit
081D- 88 1440 DEY
081E- DO EB 1450 BNE LOOP Repeat 16 times.
0820- D8 1460 CLD Clear decimal mode.
1470 *
1480 *
1490 * This section of code converts the
1500 * packed binary-coded decimal number
1510 * into ASCII characters (low order byte
1520 * first) and stores them temporarily on
1530 * the stack.
1540 *
0821- A2 00 1550 LDX #$0
0823- B5 06 1560 NEXT LDA TEMP,X Get byte and
0825- 29 OF 1570 AND #$0F mask off 4 MSB
0827- 09 BO 1580 ORA #$BO make it ASCII.
0829- 48 1590 PHA Save on stack.
082A- B5 06 1600 LDA TEMP,X Get same byte
082C- 4A 1610 LSR and move 4 MSB
082D- 4A 1620 LSR to 4 LSBs.
082E- 4A 1630 LSR
082F- 4A 1640 LSR
0830- 09 BO 1650 ORA #$BO Make it ASCII.
0832- 48 1660 PHA Save on stack.
0833- E8 1670 INX
0834- EO 03 1680 CPX #$3 Done yet?
0836- DO EB 1690 BNE NEXT No, get more.
1700

* ok

1710
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1720 * This section of code pulls the

1730 * converted ASCII digits off the stack

1740 * and prints them. In doing this it

1750 * checks for leading zeroes and

1760 * discards them.

1770 *
0838- A0 06 1780 LDY #$6 Set for 5 numbers.
083A- 68 1790 PRINT1 PLA Get a number.
083B- C9 BO 1800 CMP #$BO Is it a zero?
083D- DO 0OA 1810 BNE PRINT2 No, print it.
083F- A6 09 1820 LDX LZFLAG Yes, is it first 07
0841- DO 06 1830 BNE PRINT2 No, print it.
0843- 88 1840 DEY Is it the last number?
0844—- DO F4 1850 BNE PRINT1 No, throw it away.
0846- 4C ED FD 1860 JMP COUT Yes, print it.
0849- 85 09 1870 PRINT2 STA LZFLAG Set leading zero flag.
084B- 20 ED FD 1880 JSR COUT Print the number.
084E- 88 1890 DEY Done yet?
084F- DO E9 1900 BNE PRINT1 No, get next number.
0851- 60 2000 RTS Return to caller.

Use the ROMs to help print decimals

Now that you’ve seen how to convert hexadecimal numbers to decimal numbers
the hard way, let me show you a much easier way to do it, and it only takes up seven
bytes of memory. You all know that Applesoft is capable of taking a two-byte
hexadecimal number and printing out its decimal equivalent. It’s done all the time
when you list an Applesoft program, because the line numbers of a program are
stored as two hex bytes. Now, if we could find some way to use the routines that
Applesoft uses, we could save a lot of time and effort.

It turns out that the task is really quite simple. In the Applesoft ROMs, at
location $ED24, is the start of a routine called LINPRT. What this routine does, is
take the data that are stored in the accumulator and the X-register, and convert
them to decimal and print them. So, if we use the same convention that we have
used in the previous examples, and store the two bytes of the number to be con-
verted in LINNUM and LINNUM + 1, all our program has to do is load the most
significant byte into the accumulator and the least significant byte into the X-
register. Then all that’s left to do is jump to the LINPRT routine.

If you look at line 1230 closely, you will see that the instruction is a JMP and not
a JSR. At this point you might well be asking yourself, what happens after the
numbers are printed out? Where does control return to? To answer the question,
control is returned to the original mode or routine that called the decimal printing
program to begin with. The reason is, that at the end of the LINPRT routine is an
RTS. If our program had a JSR instead of a JMP, LINPRT would have returned
control to our program, where we would simply have executed an RTS to return to
the caller. We can save that extra byte required by the RTS in our program, by
simply letting the RTS in the LINPRT routine return control to the caller.

While this method of printing decimal numbers is the simplest, it’s not always
the best because the minute you use the LINPRT routine you are limiting your
program to running only on machines that have Applesoft in ROM or on the
language card. Your program will not run on an Integer machine. Worse than that,
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in machines that have both Integer BASIC and Applesoft, if you use this program,
you have to make sure that the Applesoft ROMs have been turned on. So, this
approach to printing decimal numbers can only safely be used on Applesoft only
machines, unless your program specifically turns on the Applesoft ROMs.

1000 #F*xddkkkkdhhhhrhhriix *k *kkkkkkhx
1010 *** *kk
1020 *** OUTPUT A DECIMAL NUMBER # 3 *%%
1030 *** *kk
1040 **xxkk*k *hhkkk kkkkkhhk =3
1050 *
1060 *
1070 * EQUATES
1080 *

0050- 1090 LINNUM .EQ $50

ED24— 1100 LINPRT .EQ $ED24
1110 *
1120 *
1130 * This subroutine is entered with the
1140 * hexadecimal number to be printed in
1150 * LINNUM (low byte) and LINNUM+1 (high
1160 * byte). LINPRT is an Applesoft
1170 * routine that converts the data in
1180 * the X-register and the accumulator
1190 * to decimal and prints it.
1200 *

0800- A5 51 1210 LDA LINNUM+1

0802- A6 50 1220 LDX LINNUM

0804- 4C 24 ED 1230 JMP LINPRT

Applying a number printing routine

Now that we have learned several ways to print out a decimal number from a
hexadecimal number, let’s see how we can apply what we’ve learned to a handy
little utility program. It is frequently desirable, useful or necessary to know how
many lines are contained in an Applesoft program. There are several alternatives.
You can print out a listing of the program and count the lines manually, you can
renumber the program starting with one, in increments of one, or you can run this
short APPLESOFT LINE COUNTER program. The easiest by far is the last.

To understand how this program works, you should first know how Applesoft
stores a program line in memory. Let’s take a simple line such as the following:

10 PRINT 123

If we were to look directly into memory, we’d see that this line is stored in the
following way:

Address | 801 | 802 | 8
Contents | 0A | 08 | 0A

06 | 807 | 808 | 809
1 132 133 J00

Looking at locations $801 and $802 we see two numbers $0A and $08 which
comprise the hex number $80A. In 6502 microprocessor systems, numbers are
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always stored in memory with the low-order byte first, followed by the high-order
byte, hence $080A or $80A. This number, represents the location in memory of
the start of the next line in the Applesoft program. So if we were to add another line
to our program, it would start at $80A. Thus, the first two bytes of any Applesoft
program are called the ‘“‘next line pointer”.

The next two bytes at $803 and $804 hold the hexadecimal equivalent of the line
number. Since our line number is less than 255, only the low-order byte is used (it’s
set to $0OA which equals 10 in decimal). The high order byte is set to zero. Next, on
the fifth byte ($805) we have the start of our program. You will notice that $805
contains the value $BA, which is a code that represents the word PRINT. In order
to conserve memory space, the programmers who wrote Applesoft decided to take
all the Applesoft keywords and assign each of them a one-byte code. Thus, every
time a word such as PRINT is used, it’s only necessary to store the one-byte code
instead of the five letters that make up the word PRINT. By the way, these special
codes are called ‘tokens’. For a complete list of tokens and their decimal and
hexadecimal equivalents, see Appendix B.

Following the PRINT token we have the value $31 stored in $806. If we check
our chart of ASCII equivalents (Appendix A) we see that $31 is the hexadecimal
equivalent of the number 1. Similarly $32 and $33 that are in locations $807 and
$808, represent the numbers 2 and 3. Finally we see that location $809 contains a
zero. This zero is what is called an end of line marker. It tells the Applesoft
interpreter that there is no more information on the current line and that it should
get ready for the next line.

Now we have almost all of the information we need to understand this next
program. We just need one more piece of data, “How does the Applesoft inter-
preter know when it has reached the end of the program?”’ The answer is simple. It
follows the end of line indicator of the last line in the program with two more zeros.
So, in our example above, if line 10 were the only line in our program, locations
$80A and $80B would contain zeros instead of a pointer to the next program line.

Counting Applesoft program lines

The line counting program starts out by clearing the screen, printing out the
program title and copyright notice and prints out the first half of the message that
tells the user how many lines are in the Applesoft program. This program then goes
on to count the number of lines. It starts by storing zeros in the two locations that
are going to hold the line count (lines 1380 to 1400).

A pointer to the start of an Applesoft program is stored in locations $67 and $68.
Generally it is set to $801, but it can change, so we pick it up instead of assuming it
is $801. This is done in lines 1410 and 1420 and this information is stored in
POINTER and POINTER + 1 (lines 1430 and 1440).

The next part of the program consists of a loop that examines the next line
pointers of each Applesoft line and looks for a next line pointer that is equal to
zero. This is an indication that the end of the program has been reached. In line
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1450, the Y-register is set to zero and in line 1460 the contents of the location
pointed to by POINTER plus any offset produced by the Y-register, is loaded into
the accumulator. Since POINTER contains the address of where the next Apple-
soft line is stored in memory, the data that is loaded into the accumulator is the
value of the next ‘next line pointer’. This information is temporarily stored in
location TEMP and TEMP + 1 (the program goes through this loop twice for each
new line and increments the offset of the Y-register to 1, hence TEMP + 1).

After the value of the next line pointer has been retrieved and stored in TEMP
and TEMP + 1, the value that has been stored in TEMP + 1, which is still in the
accumulator, is stored in POINTER + 1 (line 1510) and then temporarily saved in
the X-register (line 1520). Next, the low-order byte of the next line pointer (now in
TEMP) is transferred to POINTER, completing the updating of POINTER for the
next Applesoft line.

Earlier we said that at the end of an Applesoft program, the next line pointer of
the last line points to the two zeros that follow the end of line marker of the last line.
So, if we test for the presence of the third zero, and it’s there, we know that we have
reached the end of the program. That’s exactly what we do in line 1550. We
transferred the high-order byte of the next line pointer to the X-register a few
moments earlier. If this is a zero, it would be the third zero and the program would
go to lines 1570 and 1580, where the accumulator and the X-register are set up for a
JSR to the LINPRT routine, which will print out the number of lines counted (line
1590) and the remainder of the text message (lines 1600 to 1620). Finally, the
program executes an RTS which returns control to the caller.
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If it turns out that the end of the program has not been reached, the program
branches to line 1700 where both bytes of the line count are retrieved and 1 is added
to the count with any carry that’s generated being added to the high-order byte.
After that, the program jumps back to line 1450 to get the address of the next
program line.

1000 ***dkkrhhrrdbrrhbrrdbrdbbhdbrrhbrrirs

1010 *** kK
1020 *** APPLESOFT LINE COUNTER *kk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY *xk
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *kk
1080 ***kkkkkkkkkkhhkhhkrkrhrhrhhdrdrrhrrdrs
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
0006- 1150 LINECNT .EQ $6
0008- 1160 POINTER .EQ $8
0018- 1170 TXTPTR .EQ $18
0067- 1180 TXTTAB .EQ $67
02F6- 1190 TEMP .EQ $2F6
ED24—~ 1200 LINPRT .EQ $ED24
FC58- 1210 HOME .EQ $FC58
FDED- 1220 COUT .EQ $FDED
FF58- 1230 RETURN .EQ $FF58
1240 *
1250 *
1260 .OR $2F8
1270 *
1280 *
1290 * This is the main program where the
1300 * program title is printed out and
1310 * the lines of the Applesoft program
1320 * are counted.
1330 *
02F8- 20 58 FC 1340 JSR HOME Clear screen.
02FB- A9 58 1350 LDA #TEXT1 Point to text
02FD- AO 03 1360 LDY /TEXT1 to be printed.
02FF- 20 47 03 1370 JSR MSGPRT Print it.
0302- A9 00 1380 LDA #$0 Initialize
0304- 85 06 1390 STA LINECNT counter to
0306- 85 07 1400 STA LINECNT+1 zero.
0308- A5 67 1410 LDA TXTTAB Store program
030A- A4 68 1420 LDY TXTTAB+1 starting
030C- 85 08 1430 STA POINTER address in
030E- 84 09 1440 STY POINTER+1 POINTER.
0310- A0 00 1450 GETADDR LDY #$0 Get address of
0312- B1 08 1460 LOOP1 LDA (POINTER),Y next line &
0314- 99 F6 02 1470 STA TEMP,Y save it.
0317- C8 1480 INY
0318- CO 01 1490 CPY #$1 Got high byte?
031A- FO F6 1500 BEQ LOOP1 No, go get it.
031C- 85 09 1510 STA POINTER+1 Save high byte.
031E- AA 1520 TAX Prepare for zero test.
031F- AD F6 02 1530 LDA TEMP Get next line
0322- 85 08 1540 STA POINTER low byte & save it.
0324- EO 00 1550 CPX #$0 Last line?
0326- DO OF 1560 BNE ADDCNT No, increment count.
0328- A5 07 1570 LDA LINECNT+1 Yes, get ready
032A- A6 06 1580 LDX LINECNT to print count
032C- 20 24 ED 1590 JSR LINPRT Print it.
032F- A9 BE 1600 LDA #TEXT2 Point to text

0331- A0 03 1610 LDY /TEXT2 to be printed.
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0333- 20 47 03 1620 JSR MSGPRT Print it.
0336- 60 1630 RTS Return.
1640 *
1650 *
1660 * This subroutine increments the line
1670 * count and then goes back to check for
1680 * another line.
1690 *
0337- 18 1700 ADDCNT CLC Clear carry bit.
0338- A5 06 1710 LDA LINECNT Get current count low byte.
033A- 69 01 1720 ADC #$1 Add 1 to it.
033C- 85 06 1730 STA LINECNT Save it.
033E- A5 07 1740 LDA LINECNT+1 Get high byte of count.
0340- 69 00 1750 ADC #$0 Add 0 to add carry.
0342- 85 07 1760 STA LINECNT+1 Save it.
0344- 4C 10 03 1770 JMP GETADDR Get address of next line.
1780 *
1790 *
1800 * This is the message printing routine.
1810 *
0347- 85 18 1820 MSGPRT STA TXTPTR Set TXTPTR to address of
0349- 84 19 1830 STY TXTPTR+1 text to be printed.
034B- A0 00 1840 LDY #$0 Zero character counter.
034D- B1 18 1850 LOOP2 LDA (TXTPTR),Y Get character.
034F- FO 06 1860 BEQ ENDPRT End if it's zero.
0351- 20 ED FD 1870 JSR COUT Print character.
0354- C8 1880 INY Increment character counter.
0355- DO F6 1890 BNE LOOP2 Get next character.
0357- 60 1900 ENDPRT RTS Return to sender.
1910 *
1920 *
1930 *
0358- C1 DO DO
035B- CC C5 D3
035E- CF C6 D4
0361- A0 CC C9
0364- CE C5 A0
0367- C3 CF D5
036A- CE D4 C5
036D- D2 1940 TEXT1 .AS -"APPLESOFT LINE COUNTER"
036E- 8D 8D 1950 .HS 8D8D
0370- C2 D9 A0
0373- CA D5 CC
0376- C5 D3 A0
0379- C8 AE A0
037C- C7 C9 CC
037F- C4 C5 D2 1960 .AS -"BY JULES H. GILDER"
0382- 8D 1970 .HS 8D
0383- C3 CF DO
0386- D9 D2 C9
0389- C7 C8 D&
038C- A0 A8 C3
038F- A9 A0 B1
0392- B9 B8 B2 1980 .AS -'"COPYRIGHT (C) 1982"
0395- 8D 1990 .HS 8D
0396- C1 CC CC
0399- A0 D2 C9
039C- C7 C8 D&
039F- D3 AO D2
03A2- C5 D3 C5
03A5- D2 D6 C5
03A8- C4 2000 .AS -"ALL RIGHTS RESERVED"
03A9- 8D 8D 8D
03AC- 8D 2010 .HS 8D8D8D8D
03AD- D4 C8 C5
03BO- A0 DO D2
03B3- CF C7 D2
03B6- C1 CD A0
03B9- C8 C1 D3
03BC- AO 2020 .AS -"THE PROGRAM HAS "
03BD- 00 2030 .HS 00

03BE- A0 CC C9
03C1- CE C5 D3
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03C4- A0 C9 CE
03C7- A0 C9 D4

03CA- AE 2040 TEXT2 .AS -'" LINES IN IT."
03CB- 8D 00 2050 .HS 8D00
Using the Applesoft line counter

The program has been assembled starting at location $2F8 so that it can be
loaded into an area of memory that is not affected by Applesoft. The program can
be loaded before or after an Applesoft program has been loaded into memory. ‘To
run the program it is simply necessary to type CALL 760.

Once loaded, the program will remain in memory available for use whenever
you need it. There is one exception to this. Since the program starts at $2F8, it uses
the last 8 bytes of the input buffer. This was done because assembling the program
at $300, which is what is normally done, would cause the program to wipe out
some memory locations that are used by DOS.

Very rarely is the entire input buffer filled, so this doesn’t usually pose a prob-
lem. On top of that, Applesoft limits line lengths to 239 characters, much less than
the 256 character capacity of the buffer. Nevertheless, if for some reason the input
buffer is filled up completely (256 characters are entered before a carriage return is
pressed), part of the program will be wiped out and it will have to be reloaded.
After considerable use however, this problem has never occurred.

Drawing boxes and borders on the screen

Now that we’ve learned how to print out text and numerical data to the screen,
let’s see how we can come up with a way of making our screen look a little more
attractive. One way of doing this is to use a border around the whole screen, or a
box around just a portion of it.

Most programmers don’t take the time to develop a border printing routine and
thus when they need to draw one, usually wind up doing it in a very inefficient
manner. The routine presented here is a simple one, and not very long. Neverthe-
less, it is quite a versatile routine, and by changing only four parameters you can
completely change the size and shape of the box, as well as the symbol used to
draw it.

The program starts out by clearing the screen in line 1250. If you want to enclose
some text within the box, the routine to do it can be inserted here, or you can
position the cursor to the spot you’ll want to start printing at after the box is drawn.
Next, the current position of the cursor is saved (lines 1260 to 1290) so that the
cursor can be restored to its position after the border has been drawn. The routine
that draws the border starts at line 1360 where the cursor is positioned to the top
left-hand corner of the screen (lines 1360 to 1390). Next, the program jumps to line
1580 where it prints out a full line of symbols (the first line of the box).

To find out how many blank lines there will be inside the box, the program goes
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to the location labeled BOXLEN and stores the number found there in the X-
register. The blank lines with left and right borders on them are printed next. Lines
1430 to 1450 print the left-hand border of the blank line, while lines 1460 to 1490
print the right-hand border. Line 1490 checks to see if all the blank lines have been
printed and if so, line 1500 finishes printing out the right-hand border of the last
blank line. Then the program falls into the LINSYM routine which prints out the
bottom line of the box. After this last line is printed, the program returns to line
1310, where the program then jumps to a routine that restores the cursor’s original
position. This cursor restoring routine starts at line 1690. The program ends on line
1740 where a return from this whole program is executed.

Constants that are used by the program are stored starting at line 1800 where the
the number of blank lines within the box are stored. In line 1810 the location where
symbols on the left side of a blank line stop is stored, while the start of symbols on
the right side of a line are stored in line 1820. Finally, the symbol used to draw the
box is stored in line 1830. Try running this program and varying the constants.
You’ll be pleased and surprised at the results.

1000 ***kxrkirsx *k Kkkkhkxk * *k

1010 *%x% *kk
1020 *** TITLE BOX ook
1030 *k%k *%%
1040 R R S e S S S S L S P e S S S S S S S e S e e S e e
1050 *
1060 *
1070 *
1080 *
1090 * EQUATES
1100 *

0018- 1110 cv2 .EQ $18

0019- 1120 CH2 .EQ $19

0024 1130 CH .EQ $24

0025- 1140 CV .EQ $25

FC22- 1150 BASCAL .EQ $FC22

FC58- 1160 HOME .EQ $FC58

FDED- 1170 COUT .EQ $FDED
1180 *
1190 *
1200 *

1210 * Clear the screen, and save the
1220 * current location of the cursor for
1230 * later.

1240 *
0800- 20 58 FC 1250 JSR HOME Clear the screen.
0803- A5 25 1260 LDA CV Save the current
0805- A4 24 1270 LDY CH cursor position.
0807- 85 18 1280 STA CV2
0809- 84 19 1290 STY CH2
080B- 20 11 08 1300 JSR BOX Draw the box.
080E- 4C 40 08 1310 JMP POSCUR Restore old cursor position.
1320 *
1330 *
1340 * Print a box on the screen.
1350 *
0811- A9 00 1360 BOX LDA #$0 Place cursor
0813- 85 25 1370 STA CV at the start
0815- 85 24 1380 STA CH of the first
0817- 20 22 FC 1390 JSR BASCAL line.
081A- 20 35 08 1400 JSR LINSYM Print a line of symbols.
081D- AE 4C 08 1410 LDX BOXLEN Set box depth
0820- 20 ED FD 1420 NEXT JSR COUT Print left
0823- A4 24 1430 LDY CH side of box.

0825- CC 4D 08 1440 CPY LFTMRG Done?
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0828-
082A-
082D-
082F-
0830-
0832-

0835-
0838-
083B-
083D-
083F-

0840-
0842-
0844-
0846-
0848-
084B-

084C-
084D-
084E-
084F-

15
01
27
AA

F6
4E 08
24

EE
35 08

4F 08
ED FD

F9

1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

BNE NEXT No, do more.
LDY RTMRG Print right
STY CH side of box.
DEX End of box?
BNE NEXT No, do more.
JSR LINSYM Yes, finish.

*

*

* This subroutine prints out a line of

* symbols. It checks CH to see if

* it has past the 40th column and

* wrapped around to column O.

*

LINSYM LDA SYMBOL Get the symbol to be used.

PRTSYM JSR COUT Print it.
LDY CH Get horizontal position.
BNE PRTSYM If not zero, print again.
RTS Return to caller.

*
*

* This subroutine restores the cursor
* to its original position before the
* box was drawn.

*

POSCUR LDA CH2 Get original cursor

LDY CV2 position.

STA CH Save in proper locations.
STY CV

JSR BASCAL Send cursor there.

RTS Return to caller.

*

*

* These are constants that are used by
* the program.

*

BOXLEN .HS 15 Number of lines in box.
LFTMRG .HS 01 End of symbols on left side.
RTMRG .HS 27 Start of symbols on right side.

SYMBOL .HS AA Character used to draw border.
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GETTING INFORMATION INTO
YOUR COMPUTER

You can write a lot of useful assembly language programs that only use the
computer’s output capabilities, but sooner or later, you’re going to want to be able
to input data while your program is running. Getting information into your Apple
is not difficult at all as you can tell by looking at the fairly short program listing for
the Simple Read Keyboard Routine.

One of the things that makes it easy to input data is the configuration of hardware
in the Apple computer. Apple’s designer’s arranged things so that the keyboard
looked like a particular memory location. So, by looking at the right place in
memory, we can see if a key has been pressed and determine exactly which key it
was.

As it turns out, if you look at location $C000 you can see if a key has been
pressed. As long as no key is pressed, any value that is retrieved from location
$C000 will be less than 128. When a key is pressed, $80 is added to the ASCII value

A

m

P,
-"" 22222777

oI

c

29
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of the key pressed and that value remains in location $C000 until a command to
clear that location is given or another key is pressed.

In our program, the memory location associated with the keyboard is read in line
1180 and in line 1190 a test is made to see if a key was pressed by checking bit 7 of
the byte retrieved from $CO000. If bit 7 is zero, the keyboard is read again until it has
changed to 1. Once we’ve loaded the accumulator with the character input from the
keyboard, we should clear this memory location, otherwise the next time we check
to see if a key has been pressed, we’ll get an indication that it has, even if it hasn’t,
and get the last character that was entered. In order to clear this memory location,
it is only necessary to zero out bit seven of the data stored in $C000, since this will
make any value stored there less than 128.

The Apple hardware has been arranged in a special way so that it is possible to
turn off bit 7 by simply accessing another memory location: $CO0I0. If this location
is accessed in any way with an LDA, STA or BIT instruction, bit 7 in $C000 will be
converted from a 1 to a 0. Location $CO010 is called by a special name, Keyboard
Strobe, and in our program, it is activated in line 1200 with a BIT instruction. We
could just as easily have used an LDA instruction to achieve the same results. Some
programmers use an STA instruction to clear bit 7, and while this will work, it can
be a problem on those Apples that have been modified to include a keyboard buffer.
The reason for this is that the STA instruction actually references the location it’s
storing data to twice. So, with a keyboard buffer and an STA instruction clearing
the keyboard strobe twice for every character read, you’ll wind up losing every
other character. For best results use the LDA or BIT instructions.

After we clear bit 7 of $C000, our program prints out the character to the screen
so we can see what letter we pressed (line 1210) and it then jumps back to get
another character.

1000 Kkkkhhhhk *hkkkhkhhhk Ak kkkk
1010 *** *kk
1020 *** SIMPLE READ KEYBOARD ROUTINE ***
1030 *** *kk
1040 *kkkk Fkkdkk * * *
1050
1060
1070
1080
1090
1100
1110 *

C000- 1120 KEYBRD .EQ $C000

C010- 1130 KBDSTRB .EQ $C010

FDED- 1140 COUT .EQ $FDED
1150 *
1160 *
1170 *

0800- AD 00 CO 1180 GETKEY LDA KEYBRD Read keyboard

0803- 10 FB 1190 BPL GETKEY If no key pressed, read again.

0805- 2C 10 CO 1200 BIT KBDSTRB Key pressed, clear strobe.

0808- 20 ED FD 1210 JSR COUT Echo character to screen.

080B- 4C 00 08 1220 JMP GETKEY Get next character.

b5k Ok Ok b b

EQUATES

This program works fine for very short keyboard entries, but becomes inconven-
ient to use for long entries. To begin with, this program doesn’t print any prompt
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character, so you don’t know where the text entry on the screen is required. In
addition, the program doesn’t allow for any way of terminating text input except by
pressing RESET.

A better way to read the keyboard

The problems encountered with the previous program can be eliminated by
taking advantage of one of the monitor ROM routines and making a small change
in the program. Instead of having our program look at the keyboard directly, we
can use the RDKEY routine (line 1170) in the ROM, at location $FDOC, to do that
job for us. This routine puts a flashing cursor on the screen at the location where an
input is expected, reads the keyboard location ($C000) and clears the strobe
($C010).

To allow us to terminate the input of data we can designate a special character as
the terminator and test for its presence. In this case, the ESCape character ($9B) is
used. Line 1180 checks to see if an ESCape has been entered. If it has, the program
returns to the calling mode or program, if not, the character is printed out and a
new character is fetched.

1000 *xkkkrkrhhkrhhrdrhrhhhkhhkhrkhhhrkhrdrs

1010 *** *kk
1020 *** IMPROVED **xk
1030 *** READ KEYBOARD ROUTINE *kk
1040 *** *kk
1050 **kkkkkkrkkhkrhkkkrrhhrkrkkkhkrrkrrrrhrkr
1060 *
1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
FDOC- 1120 RDKEY .EQ $FDOC
FDED- 1130 COUT .EQ $FDED
1140 *
1150 *
1160 *
0800- 20 OC FD 1170 GETKEY JSR RDKEY Read the keyboard.
0803- C9 9B 1180 CMP #$9B Was key pressed ESC?
0805- FO 06 1190 BEQ QUIT Yes, quit program.
0807- 20 ED FD 1200 JSR COUT No, print key pressed.
080A- 4C 00 08 1210 JMP GETKEY Get the next key.
080D- 60 1220 QUIT RTS Return to caller.

Both of the previous routines input text one character at a time and neither allows
you to make corrections on inputted data. The reason you can’t make corrections is
that the text being entered is not stored in any buffer before it is processed. If it
were, then if an error were caught it could be corrected while it was still in the
buffer and before it was processed.

Entering text a line at a time

By taking advantage of another routine in the monitor ROM (GETLN which is
located at $FD6A) we can input text into the input buffer on page 2 of memory
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($200 to $2FF) and use all of the Apple’s normal editing capabilities. As long as
you don’t press the RETURN key, it is possible to backspace and change any
character and then copy over the rest of the line.

This type of program comes in particularly handy when you want the user to
enter some text that is going to be printed out again later under program control.
The reason is, it stores the entered text in memory the same way text that is used
with the MSGPRT routine is stored. That is, it’s stored with the high bit set and is
terminated by a zero. One place where you’ll find this routine a must is when you
ask the user for the name of a file to be loaded or saved to. After the user inputs that
name, it must be stored for later use.

The GETLN routine at $FD6A prints out the prompt that is currently stored in
$33 before it waits for the user’s input. More often than not, you’ll want to ask for
the user’s input without using this prompt, as is the case here. To do this, another
entry point into this routine, which I call GETLN1 and is located at $FD6F, is used
(line 1180). Upon returning from GETLN], the corrected text that the user entered
is stored in the input buffer. It must be moved from there immediately (lines 1200 to
1240) because it could get wiped out by the next data that are entered. The end of
the data in the input buffer is indicated by a carriage return ($8D). Since we want
our text to be terminated by a zero and not a carriage return, the carriage return is
replaced by a zero and stored at the end of the text in the user designated buffer
(lines 1250 to 1260).

1000 **dkdrhhhdhrdddddrbbdrrrbhddrrdbhirrs

1010 *** *kk

1020 *** TEXT INPUT ROUTINE *kk

1030 *** *kk

1040 *Ekkdrkihkirdirhrrrdrhrrrrrirrhtrirts

1050 *

1060 *

1070 *

1080 *

1090 * EQUATES

1100 *
0200- 1110 IN .EQ $200
0300- 1120 BUFFER .EQ $300
FD6F—- 1130 GETLN1 .EQ $FD6F
FDED- 1140 COUT .EQ $FDED

1150 *

1160 *

1170 *
0800- 20 6F FD 1180 JSR GETLN1 Get a line of text, no prompt.
0803- A0 FF 1190 LDY #$FF Initialize character
0805- C8 1200 LOOP INY counter to zero.
0806- B9 00 02 1210 LDA IN,Y Get a character
0809- 99 00 03 1220 STA BUFFER,Y and store it in buffer.
080C- C9 8D 1230 CMP #$8D Is it a carriage return?
080E- DO F5 1240 BNE LOOP No, get next character.
0810- A9 00 1250 LDA #$0 Yes, make it a zero
0812- 99 00 03 1260 STA BUFFER,Y to indicate end of text.
0815- 60 1270 RTS Return to caller.
Entering as much text as you want

You will find the TEXT INPUT ROUTINE a useful program to use when it is
necessary to enter a line of text. It does have the limitation, however, that you
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cannot enter more than 256 characters with it. The reason is that the Y-register is
used as the pointer from a base address to where the next character is to be stored.

If you want to be able to store unlimited amounts of text into memory (up to the
capacity of your computer that is) then the IMPROVED TEXT INPUT ROUTINE
is just what the doctor ordered. This program uses a 2 byte pointer on page zero
called BUFPTR to indicate the location of the next character to be stored.

The IMPROVED TEXT INPUT ROUTINE is fairly similar the previous pro-
gram, with a few exceptions. It takes text out of the input buffer every time the
carriage return is pressed and stores everything, including the carriage return, in
the user defined buffer. Then the program goes back and gets another line of text.
This continues until the program encounters a Control-Q (line 1520), at which
point it replaces the Control-Q with a zero and exits to the last active BASIC.

Because this program uses the input buffer to enter text, a maximum of 255
characters can be entered before a carriage return must be pressed. Chances of
having a single line that is greater than 255 characters are small, so this should not
pose any problem. If you will want to print this text out again, it will be necessary
to use one of the long message printing routines that were discussed in the last
chapter. And in fact, if you combine this program, with one of those, you have two
major parts of a rudimentary text editor. By doing a little additional work to
develop an in-memory byte editor, it’s possible to write a simple text editor.

You should notice that this program uses the IMPROVED MESSAGE
PRINTER that was discussed in the last chapter. Since this routine is only being
used to print out a few short messages, its limitation to 256 characters is not a
problem. Wherever possible throughout this book, you will find that previously
developed programs are used as subroutines.

1000 ***kkkkkkkkkrhkkrriis * *hkkkkik
1010 *** *kk
1020 *** TIMPROVED TEXT INPUT ROUTINE *%*%*
1030 ***% *hk
1040 *** COPYRIGHT (C) 1982 BY *h%
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *kk
1080 ***kkkkkkkkkkkkkkdkhkhhhhhhhhihhk L
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *

0006- 1150 BUFPTR .EQ $6

0008- 1160 TXTPTR .EQ $8

0200- 1170 IN .EQ $200

03D0- 1180 WARMDOS .EQ $3DO

9000- 1190 BUFFER .EQ $9000

E000- 1200 BASIC .EQ $E000

FC58- 1210 HOME .EQ $FC58

FDOC- 1220 RDKEY .EQ $FDOC

FD6F- 1230 GETLN1 .EQ $FD6F

FDED- 1240 COUT .EQ $FDED
1250 *
1260 *
1270 * Print out the title and copyright
1280 * notice and wait for the user to press
1290 * any key.
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0800-
0803-
0805-
0807-
080A-

080D-
0810-
0812-
0814-
0816-
0818-
081B-
081D-
081F-
0822-
0824
0826-
0828-
0829-
082B-
082D-
082F-
0831-
0833-
0836-
0838-
083A-
083D-
083F-
0841-
0844

0847-
0849-
084B-
084D-
084F-
0851~
0854-
0855-
0857-

0858-
085B-
085E-
0861-
0864—
0867-
086A—
086D-
0870-
0873-
0875-
0878-
087B-
087E-
0881-
0884-
0887-
0888-
088B-
088E-
0891-
0894-

20
A9
A0
20
20

20
A9
A0
85
84
20
AO
A2
BD
91
Cc9
FO
E8
E6
DO
E6
Cc9
DO
4C
A9
91
AD
Cc9
DO
4C
4C

85
84
AO
B1
FO
20
Cc8
DO
60

c9
D2
C5
D4
D4
CE
D4
CF
Cc9
8D
Cc2
CA
C5
Cc8
Cc7
C4
8D
C3
D9
Cc7
AO
A9

FC

08
FD

FC

FD

02

08

03

03
EO

FD

Clear screen.
Get text to be
printed.

Print it.

Get key press.

Store text in buffer area.

Get location
of text buffer
and store in
buffer pointer
Input a line.

Get input and
save in buffer.
End of input?
Yes, finish up
No, increment
indices and
get more data.

Carriage return?

No, get a character.

Yes, new line.

Done, store a

zero as the last byte.
Check if DOS is

present.

It's not, return via BASIC.
It is, return through DOS.
Jump to BASIC warm start.

—~"IMPROVED TEXT INPUT ROUTINE"

-"BY JULES H. GILDER"

1300 *

1310 JSR HOME

1320 LDA #TEXT

1330 LDY /TEXT

1340 JSR MSGPRT
1350 JSR RDKEY

1360 *

1370 *

1380 * Clear the screen and start getting
1390 * text from the keyboard, one line at
1400 * a time.

1410 *

1420 JSR HOME

1430 LDA #BUFFER
1440 LDY /BUFFER
1450 STA BUFPTR
1460 STY BUFPTR+1
1470 START  JSR GETLN1
1480 LDY #$0

1490 LDX #$0

1500 LOOP1  LDA IN,X

1510 STA (BUFPTR),Y
1520 CMP #$91

1530 BEQ ENDIT

1540 INX

1550 INC BUFPTR
1560 BNE NEXT

1570 INC BUFPTR+1
1580 NEXT CMP #$8D

1590 BNE LOOP1

1600 JMP START

1610 ENDIT  LDA #$0

1620 STA (BUFPTR),Y
1630 LDA WARMDOS
1640 CMP #$4C

1650 BNE NODOS

1660 JMP WARMDOS
1670 NODOS  JMP BASIC+3
1680 *

1690 *

1700 * This is the message printing routine.
1710 *

1720 MSGPRT STA TXTPTR
1730 STY TXTPTR+1
1740 LDY #$0

1750 LOOP2  LDA (TXTPTR),Y
1760 BEQ ENDPRT
1770 JSR COUT

1780 INY

1790 BNE LOOP2

1800 ENDPRT RTS

1810 *

1820 TEXT .AS

1830 .HS 8D8D

1840 .AS

1850 .HS 8D
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0897- B9 B8 B2 1860 .AS -"COPYRIGHT (C) 1982"
089A- 8D 1870 .HS 8D

089B- C1 CC CC

089E- A0 D2 C9

08A1- C7 C8 D4

08A4- D3 A0 D2

08A7- C5 D3 C5

08AA- D2 D6 C5

08AD- C4 1880 .AS -"ALL RIGHTS RESERVED"
08AE- 8D 8D 8D
08B1- 8D 1890 .HS 8D8D8D8D

08B2- DO D2 C5
08B5- D3 D3 AO
08B8- C1 CE D9
08BB- A0 CB C5
08BE- D9 A0 D4
08C1- CF A0 C3
08C4- CF CE D4
08C7- C9 CE D5

08CA- C5 1900 .AS -"PRESS ANY KEY TO CONTINUE"
08CB- 00 1910 .HS 00
Entering decimal numbers

In the last chapter we saw how it was possible to take hexadecimal numbers and
convert them so that they printed out as decimal numbers. Now we’re going to do
the reverse. We’re going to enter decimal numbers (whole integers only) and
convert them into hexadecimal numbers that can be used by our program. It is not
necessary to use this approach if all you’re going to do is enter a single digit, such
as a number for a menu selection, because it’s easier to check for the number as an
ASCII character. But for entering numbers that are going to be used in calcula-
tions, you’ll need this program.

The program starts our by getting a line of text from the user (line 1330). This
line should contain only the decimal digits of the number we want to convert and
the number should not contain more than five digits, which is the maximum
number of digits that can be represented by two bytes.

The program has some simple error checking built into it. The first thing it does
is check to see if a number was entered or the RETURN key was just pressed. If the
return key was pressed, the length of the text entered, which is stored in the X-
register in the GETLN1 routine, is zero. Since the input of this routine must be at
least 1 digit, this generates an error (lines 1340 and 1350). Next is the check for a
number that has more than 5 digits and its appropriate error message (lines 1360
and 1370). By the way, the error routine, which begins at line 1970, uses one of the
routines in the Apple ROM. This routine, PRERR which is at $FF2D, rings the
bell and prints out the message ERR. After an error is detected and the user is
informed, he is given an opportunity to start over again (line 1990).

Getting back to our main program, the length of the digit entered is stored in a
location called LENGTH (line 1380), for use later on when we want to see if we’ve
processed all digits of the number. Next the two locations that will be used to hold
the converted number — LINNUM and LINNUM + 1 — are initialized to zero and
one last check is made to make sure that only numbers and no letters or symbols
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were entered (lines 1420 to 1470). An error message is generated if anything other
than numerals were entered.

Data that are entered via the GETLNI1 routine consist of the ASCII code for the
character to which $80 has been added. This means that the digits 0 through 9 will
appear as $B0 through $B9. If somehow we were able to make the left nibble of the
byte equal to zero, we’d have the decimal equivalent of all of the digits in the
number. That’s exactly what we do in line 1480. This conversion is done within a
loop that retrieves one digit at a time and stores it temporarily on the stack (line
1490). Next, the current contents of LINNUM and LINNUM + 1 are multiplied by
ten by a routine starting in line 1550 so the digits can be added to each other to build
the number (e.g. 1 x 10 + 2 = 12).

The multiplication by ten is accomplished by multiplying by two (lines 1550 and
1560), saving the the results (lines 1580 to 1600) and then multiplying again by
four, to get a total multiplication of 8 (lines 1610 to 1640). Then the 8 and 2
multiples are added together to get the final multiple of 10 (lines 1650 to 1700).
Finally, the digit that was stored on the stack is retrieved and added to the contents
of LINNUM (lines 1710 to 1730). If a carry is generated, it is added to LIN-
NUM + 1 (lines 1740 to 1760). This whole process is carried out until all of the
digits of the number that was entered have been processed. When done, the hex-
adecimal equivalent of the number entered can be found in LINNUM and LIN-
NUM + 1.

If you want to limit your programs to operating on a computer with Applesoft in
ROM, then you can use INPUT INTEGER ROUTINE NO. 2 to enter data. This
program was originally written by Peter Meyer and was published in S-C Soft-
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1000 ***% B R S S S S e e e T
1010 *** *kk
1020 *** INPUT INTEGER ROUTINE NO. 1 *%%
1030 *** *hk
1040 *** COPYRIGHT (C) 1982 BY *&k
1050 *** JULES H. GILDER *kk
1060 *** ALL RIGHTS RESERVED *xk
1070 *** *kk
1080 *kkkkkkkhkkkkhkkkhhrk *khkkk
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
0006- 1140 LENGTH .EQ $6
0050- 1150 LINNUM .EQ $50
0200- 1160 IN .EQ $200
FD6F- 1170 GETLN1 .EQ $FD6F
FD8E- 1180 CROUT .EQ $FD8E
FF2D- 1190 PRERR .EQ $FF2D
1200 *
1210 *
1220 * This section of code handles entry
1230 * of the number from the keyboard and
1240 * then checks each digit to see that it
1250 * is valid. If a valid digit is found
1260 * the 4 most significant bits (MSBs)
1270 * are set to zero to get just the digit
1280 * by itself. It also checks to see if
1290 * more than 5 digits have been entered.
1300 * If an error is detected an error
1310 * message is generated.
1320 *
0800- 20 6F FD 1330 START JSR GETLN1 Get a number
0803- EO 00 1340 CPX #$0 Any entry?
0805- FO 49 1350 BEQ ERROR No, do over.
0807- EO 06 1360 CPX #$6 Is >5 digits?
0809- BO 45 1370 BCS ERROR Yes, do over.
080B- 86 06 1380 STX LENGTH Save number of digits.
080D- A9 00 1390 LDA #$0 Initialize
080F- 85 50 1400 STA LINNUM hex number to
0811- 85 51 1410 STA LINNUM+1 zero.
0813- A0 00 1420 LDY #$0
0815- B9 00 02 1430 LOOP LDA IN,Y Get a character.
0818- C9 BO 1440 CMP #$BO Test to see if
081A- 90 34 1450 BCC ERROR it is a digit
081C- C9 BA 1460 CMP #$BA from 0 to 9.
081E- BO 30 1470 BCS ERROR
0820- 29 OF 1480 AND #$0F Mask out 4 MSBs.
0822- 48 1490 PHA Save digit
1500 *
1510 *

1520 * This section of code multiplies a
1530 * 16-bit number stored in LINNUM by 10.

1540 *
0823- 06 50 1550 MULT  ASL LINNUM Multiply by 2
0825- 26 51 1560 ROL LINNUM+1
0827- A5 51 1570 LDA LINNUM+1 Save number
0829- 48 1580 PHA multiplied by
082A- A5 50 1590 LDA LINNUM 2 for latter.
082C- 48 1600 PHA
082D- 06 50 1610 ASL LINNUM Multiply by 4
082F- 26 51 1620 ROL LINNUM+1 to get a total
0831- 06 50 1630 ASL LINNUM multiplication
0833- 26 51 1640 ROL LINNUM+1  of 8.
0835- 68 1650 PLA Add the 2 & 8
0836- 65 50 1660 ADC LINNUM multiples to
0838- 85 50 1670 STA LINNUM get a total
083A- 68 1680 PLA multiplication
083B- 65 51 1690 ADC LINNUM+1 of 10.
083D- 85 51 1700 STA LINNUM+1
083F- 68 1710 PLA Get current

0840- 65 50 1720 ADC LINNUM digit & add it
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0842- 85 50 1730 STA LINNUM to the partial
0844- A9 00 1740 LDA #$0 sum.
0846- 65 51 1750 ADC LINNUM+1
0848- 85 51 1760 STA LINNUM+1
1770 *
1780 *
1790 * This section checks to see if all of
1800 * the digits have been processed and if
1810 * not gets another digit until there
1820 * are no more.
1830 *
084A- C8 1840 INY
084B- C4 06 1850 CPY LENGTH Finished?
084D- DO C6 1860 BNE LOOP No, get more.
084F- 60 1870 RTS Yes, no more.
1880 *
1890 *
1900 * This subroutine rings the bell and
1910 * prints out the message ERR followed
1920 * by a carriage return. Control is
1930 * then passed back to the beginning of
1940 * the program so that a valid number
1950 * can be entered.
1960 *
0850- 20 2D FF 1970 ERROR JSR PRERR Error message
0853- 20 8E FD 1980 JSR CROUT Output a carriage return.
0856- 4C 00 08 1990 JMP START Start over.

ware’s Apple Assembly Line. The program makes extensive use of internal Apple-
soft routines and will give us an opportunity to see how things are done inside
Applesoft. One thing should be pointed out here, and that is that using ROM
routines doesn’t always save you a lot of memory over writing dedicated routines.
If you take a look at the length of this program and at the length of the previous
program, you’ll see that this one is only 13 bytes shorter than the former.

The first thing that the program does is to input a line of text into the keyboard
buffer (lines 1330 and 1340). Once a carriage return has been pressed, the program
then checks to see if at least one character was entered. If not, the program jumps to
an error routine that sets the carry bit. If a return from this routine has the carry bit
clear, the calling program will know that no errors took place. If no error is
generated, the program goes on to temporarily save the length of the number
entered on the stack while it does a subroutine jump do an Applesoft ROM routine
called GDBUFFS.

The GDBUFFS routine, which is located at $D539, puts a zero at the end of the
input buffer. It then proceeds to mask off (or zero out) the most significant bit (bit 7)
on all bytes in the input buffer. This is equivalent to subtracting $80 from all bytes.
The result is that all of the data in the input buffer are in their true ASCII form.
Upon returning from GDBUFEFS, the length of the number is retrieved from the
stack (line 1450) and a check is made to see if more than five digits were entered
(line 1460). If so an error is generated and the carry is set. If not, the length is
transferred to the X-register, where it is used as an index into the input buffer (lines
1480 to 1500).
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1000 ***EFAEAAXALLAAXAAALAAXAAA A A XA A A A A hhhhdk

1010 *** KKk
1020 *** INPUT INTEGER ROUTINE NO. 2 *#%%
1030 *** *kk
1040 *** BY PETER MEYER *xk

1050 *** FROM APPLE ASSEMBLY LINES kK
1060 *** PUBLISHED BY S-C SOFTWARE Fkk

1070 *** *hk
1080 ***kkkkkk *kkkkdhk *kkkkkkk
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
0050- 1150 LINNUM .EQ $50
009D- 1160 FACEXP .EQ $9D
00A0- 1170 FACMO .EQ $A0
00A1- 1180 FACLO .EQ $A1
00A2- 1190 FACSGN .EQ $A2
00B7- 1200 CHRGOT .EQ $B7
00B8- 1210 TXTPTR .EQ $B8
0200- 1220 IN .EQ $200
D539- 1230 GDBUFFS .EQ $D539
EBF2- 1240 QINT .EQ $EBF2
EC4A- 1250 FIN .EQ $EC4A
FD75- 1260 NXTCHR .EQ $FD75
1270 *
1280 *
1290 * This section gets a character from
1300 * the keyboard and stores it in the
1310 * input buffer ($200 to $2FF).
1320 *
0800- A2 00 1330 LDX #$0
0802- 20 75 FD 1340 JSR NXTCHR Get character, put in buffer.
0805- 8A 1350 TXA Check for null entry.
0806- FO 27 1360 BEQ ERROR Null, set carry.
1370 *
1380 *
1390 * This checks for alpha input and also
1400 * eliminates entries that would cause
1410 * an overflow condition.
1420 *
0808- 48 1430 PHA Save length.
0809- 20 39 D5 1440 JSR GDBUFFS Put 0 at end of input buffer.
080C- 68 1450 PLA Retrieve length.
080D- C9 06 1460 CMP #$06 More than 5 digits entered?
080F- BO 1E 1470 BCS ERROR Yes, set carry.
0811- AA 1480 TAX No, use length as index.
0812- CA 1490 DEX
0813- BD 00 02 1500 LOOP LDA IN,X Get character from buffer.
0816- C9 41 1510 CMP #'A Is it alpha?
0818- BO 15 1520 BCS ERROR Yes, set carry.
081A- CA 1530 DEX No, decrement char. count.
081B- 10 F6 1540 BPL LOOP Get next character.
1550 *
1560 *
1570 * Get the number from the input buffer
1580 * and load it into the floating point
1590 * accumulator.
1600 *
081D- A9 00 1610 LDA #IN Get address of
081F- A0 02 1620 LDY /IN input buffer
0821- 85 B8 1630 STA TXTPTR and save it in a
0823- 84 B9 1640 STY TXTPTR+1 =zero page pointer.
0825~ 20 B7 00 1650 JSR CHRGOT Get number from buffer.
0828- 20 4A EC 1660 JSR FIN Put it in floating pt. acc.
1670 *
1680 *
1690 * Check to see if the number is
1700 * negative. If it is set the carry bit
1710 *

082B- A5 A2 1720 LDA FACSGN See if number is negative.
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082D- 10 02 1730 BPL CHKSIZE No, check size of number.
082F- 38 1740 ERROR SEC Yes, error.
0830- 60 1750 RTS
1760 *
1770 *
1780 * Check to see if the number is too big
1790 *
0831~ A5 9D 1800 CHKSIZE LDA FACEXP
0833- C9 91 1810 CMP #$91
0835- BO 0C 1820 BCS END Too large.
1830 *
1840 *
1850 * Convert the number, which is now in
1860 * the floating point accumulator into
1870 * an integer and store it in LINNUM.
1880 *
0837- 20 F2 EB 1890 JSR QINT Integer conversion.
083A- A5 Al 1900 LDA FACLO Transfer number to LINNUM.
083C- A4 AO 1910 LDY FACMO
083E- 85 50 1920 STA LINNUM
0840- 84 51 1930 STY LINNUM+1
0842- 18 1940 CLC Value is ok.
0843- 60 1950 END RTS

In the loop starting at line 1500, each of the characters that was entered is
checked to see if it is an alpha character. If it is, an error is generated, otherwise the
program falls into a routine that takes the number from the input buffer and puts it
into the floating point accumulator (line 1610). To do this Applesoft’s CHRGOT
routine at $B7 on page zero is used. Before jumping to this routine however, it is
necessary to set a text pointer that this routine uses to point to the first digit of the
number. This is done in lines 1610 to 1640 and CHRGOT is jumped to in line 1650.
Finally, a jump is made to another Applesoft routine called FIN, which is located at
$EC4A. This routine takes the number retrieved by the CHRGOT routine and
converts it to floating point format and places it in the floating point accumulator
(line 1660).

Once the number is in the floating point accumulator, two more tests are per-
formed on it, one to check for a negative number (lines 1720 to 1730) and one to
check for too large a number (maximum size number is 65535). Finally, if the
number entered passes all of these tests, it is converted into an integer number (line
1890) by still another Applesoft routine: QINT which is located at SEBF2. QINT
stores the converted number, as a hexadecimal number in two locations of the
floating point accumulator: FACLO and FACMO. From there, the number is taken
and stored in LINNUM and LINNUM + 1 (lines 1900 to 1930), the carry bit is
cleared indicating no errors were encountered.

While this program was assembled to operate at $800, it can be loaded as is into
any memory range and work properly. This is because there are no absolute jumps
to any routines within the program. All jumps are relative branches (e.g. move
down 30 locations as opposed to move to location $81E). Thus the program is
completely relocatable.

Hexadecimal numbers can be entered too

‘While most of the number entry your programs will do will probably deal with
decimal numbers, occasionally it will be necessary to allow the user to enter
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hexadecimal numbers as well. The general technique used is similar to the one that
we used for entering decimal numbers in the program INPUT INTEGER ROU-
TINE NO. 1. First a line of text is requested from the user and then it is checked for
the proper number of digits. In the case of hexadecimal numbers, we only wish to
permit 4 digits, instead of the 5 allowed for decimal. This change is reflected in line
1350.

After the data have been entered, a check is made to see if the characters entered
are numbers in the 0 to 9 range, just as was done in the integer program. Next,
however, a check is also made to see if any of the non-digits are letters of the
alphabet from A to F (lines 1470 to 1490), which are legal hex digits. Once all of the
checking is done, the program goes about converting the legal alpha characters A
to F to the numerical range of $BA to $BF. This is done by subtracting 6 from the
current alpha value (line 1620).

At this point, all of the hexadecimal digits that have been entered have the proper
hex digit in the right-most (least significant) nibble and a $B in the left-most (most
significant) nibble. If we can get rid of the $B and combine the four least significant
nibbles in the proper order, we can produce the hex number we require. This is
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what is done in lines 1630 to 1720. From 1630 to 1660, the low-order nibble is
shifted left four times so that it becomes the high order nibble. The $B that was
there previously is thus eliminated.

Now that we have the first digit of our hexadecimal number as the high-order
nibble of the accumulator, all we have to do is shift it into LINNUM and from there
into LINNUM + 1. This is done by the code in lines 1670 to 1720. Now, if this
whole process is repeated for each digit of the hex number, starting with the most
significant digit (as we have here), the answer will appear in locations LINNUM
and LINNUM + 1. As each digit is added, it gets shifted from the low-order byte of
LINNUM to the high-order byte of LINNUM and then to the low-order byte of
LINNUM + 1 and finally to the high-order byte of LINNUM + 1.

Throughout the last two chapters we have looked at a variety of ways of getting
information into and out of the computer. We’ve even learned how to draw borders
on the screen. Now, let’s put a few of the things we’ve learned together to produce a
program subroutine that all assembly language programmers have had to write at
one time or another. We’ll write a selection menu program that will print out a title
and several selection choices, allow the user to pick a choice and then jump to the
appropriate routine. The task of allowing the user to select one option from a list of

1000 **kkdkkkhrrk kkkkkkkkkkkkkhkkkkhhkkkhk
1010 *** *kk
1020 *** INPUT A HEX NUMBER ROUTINE *xk
1030 *** *kk
1040 *** COPYRIGHT (C) 1982 BY kK
1050 *** JULES H. GILDER *hk
1060 *** ALL RIGHTS RESERVED *kk
1070 *** *kk
1080 ***kkkkkkkkkkkkhhkkrhhhhrrk *hkk
1090 *
1100 *
1110 * EQUATES
1120 *
0006 1130 LENGTH .EQ $6
0050- 1140 LINNUM .EQ $50
0200- 1150 IN .EQ $200
FD6F— 1160 GETLN1 .EQ $FD6F
FD8E- 1170 CROUT .EQ $FD8E
FF2D- 1180 PRERR .EQ $FF2D
1190 *
1200 *
1210 *
1220 *
1230 * This section of code handles entry
1240 * of the number from the keyboard and
1250 * then checks each digit to see that it
1260 * is valid. It also checks to see if
1270 * more than 4 digits have been entered.
1280 * If an error is detected an error
1290 * message is generated.
1300 *
1310 *
0800- 20 6F FD 1320 START JSR GETLN1 Get a number
0803- EO 00 1330 CPX #$0 Any entry?
0805- FO 37 1340 BEQ ERROR No, do over.
0807- EO 05 1350 CPX #$5 Is it >4 digits?
0809- BO 33 1360 BCS ERROR Yes, do over.
080B- 86 06 1370 STX LENGTH Save number of digits.
080D- A9 00 1380 LDA #$0 Initialize
080F- 85 50 1390 STA LINNUM hex number to

0811- 85 51 1400 STA LINNUM+1 =zero.
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0813-
0815-
0818-
081A-
081C-
081E-
0820-
0822-
0824-
0826-

0828-
082A-
082B-
082C-
082D-
082E-
0830-
0831-
0833-
0835-
0836-

0838-
0839-
083B-
083D-

083E-
0841-
0844

c8
C4
DO
60

00
00
BO
22
BA
0A
Cc1
1A
Cc7
16

06

04

50
51

F8

06
D8

02

1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920

20 2D FF 1930
20 8E FD 1940
4C 00 08 1950

LDY #$0
LOOP LDA IN,Y Get a character.
CMP #$B0O Test to see if
BCC ERROR it is a digit
CMP #$BA from 0 to 9
BCC OKAY or A through F
CMP #$C1
BCC ERROR
CMP #$C7
BCS ERROR
*
*
* This section of code converts the
* letters A through F to the
* hexadecimal values $BA through $BF
* by subtracting 6 from the value of
* the letter. The low order nibble of
* the accumulator is moved into the
* high order nibble and the accumulator
: is shifted into LINNUM and LINNUM+1.
SBC #$6 Convert A-F
OKAY ASL Shift lo order
ASL nibble to hi
ASL order nibble.
ASL
LDX #$4
SHIFT  ASL Shift
ROL LINNUM accumulator
ROL LINNUM+1 into LINNUM
DEX and LINNUM+1
BNE SHIFT
*
*
* This section checks to see if all of
* the digits have been processed and if
* not gets another digit until there
* are no more.
*

CHKDONE INY

Skook 3k ok SR ¥ o OF Ot

ERROR JSR PRERR

CPY LENGTH Finished?
BNE LOOP No, get more.
RTS Yes, no more.

This subroutine rings the bell and
prints out the message ERR followed
by a carriage return. Control is
then passed back to the beginning of
the program so that a valid number
can be entered.

Error message.
JSR CROUT Output a carriage return.
JMP START Start over.

many and then jumping to the appropriate routine is not difficult. But frequently it
is done in an inefficient manner. Here is a general purpose routine that I’'m sure
you’ll find very useful.

Use a library to make programming easier
The SAMPLE MENU PROGRAM uses all or part of three programs that we
have already discussed: LONG MESSAGE PRINTER NO. 2, TITLE BOX and the

IMPROVED READ KEYBOARD ROUTINE. In fact, if you examine the pro-
gram carefully, you’ll see that only about 30% of it is new, the remainder is just
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routines that we have already discussed. This situation illustrates a very important
concept, that the best way to program is to use routines from a library of programs
that you have already developed.

It also illustrates another important concept, that the programming task should
be broken down into individual modules and programmed one module at a time.
This makes the programming task more manageable and also makes troubleshoot-
ing a program a lot easier. Remember, programs don’t always work the first time
out.

How to write a menu program

Getting back to our menu program, after clearing the screen, our program
jumps immediately to the message printing subroutine. This routine is different
than the ones we’ve used recently. It is the in-line message printing routine that we
examined in the last chapter. One advantage of this subroutine, is that it is a little
easier to follow the flow of the program because the messages that are printed out
are integrated into the program at exactly the spot they are needed. There are two
distinct disadvantages to this approach however. One is that if you are trying to
trace the operation of a program with an in-line printing routine and you don’t have
an original source code listing, it is very difficult to do. The second is that if you
ever decide to do foreign language translations of your program, it is a lot easier to
do if all of the text is grouped in one specific place.

The program prints out the title, the menu of choices and the prompting message
asking for the user’s choice. The next thing it does, is it stores the current position
of the cursor (lines 1610 to 1640), which is one space after the colon on the line
‘ENTER CHOICE: ’ and then goes back and draws the box around the title (line
1650). After drawing the box, the program them restores the cursor to its former
position right after the choice prompt. It then reads the keyboard (line 2230)
looking for any number in the range of 1 to 7. If anything other than a number
within this range is pressed, the entry is ignored.

If a number in the 1 to 7 range is selected, the number is converted from ASCII
with the high bit set, to hexadecimal and 1 is subtracted from the number to put it in
the O to 6 range (line 2380). Next, this number is going to be converted into an
index into a table of addresses that will be used to retrieve the address of the
subroutine that is desired. Since the addresses in the table all require two bytes, the
number that we got from line 2380 must be doubled (line 2390). Thus, if we
selected item 1, line 2380 resulted in the number O, this is doubled and we still have
zero, so the address information we want starts at the beginning of the table with no
offset. If we had selected item number 4, that number would be converted to 3
which would be doubled to 6. This means that the address we want starts at the 7th
byte from the beginning of the table. If each address takes of up two bytes and there
are 3 choices before this one, six bytes have already been used. Soit’s easy to see
why the information we want is at the 7th byte. The byte we retrieved with the offset
of six (line 2410), was the seventh byte because we started counting from zero.
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Using the stack to jump to a subroutine

Once we have the correct index into the jump table, the address of the routine we
want to jump to is loaded into the accumulator and then pushed onto the stack (lines
2410 to 2450), HIGH BYTE FIRST! I emphasize this, because all other two-byte
operations with the 6502 deal with the low byte first. We push the address on the
stack in this manner, because the stack has a LIFO (Last In, First Out) structure.
That means that when the address is pulled off the stack to jump to the appropriate
subroutine, it will be pulled off in the conventional manner, low byte first.

If you take a careful look at the table of jump addresses that begins at line 2860,
you’ll notice two things. The first is that the addresses have been stored in the table
high-byte first. This makes it easier for the programmer to read when he’s looking
at the source listing and also makes it easier to push the address on the stack in the
proper order. More important than that, if you look at the addresses in the table and
the actual address of the start of the various routines, you’ll find that the address in
the table is always one less than the real address. The reason for this is simple. By
pushing the address on the stack, we’ve fooled the 6502 processor into thinking
that the program executed a JSR instruction. So, when an RTS instruction is
executed (line 2460), the 6502 pulls the first two bytes off the top of the stack, low-
byte first, it increments the low-byte by one, and then jumps to the address, thinking
it is returning from a subroutine call to execute the next available instruction. This
method of implementing an absolute jump to another part of the program, based on
addresses retrieved from a table is a fairly efficient way of doing things.

That’s the meat of the program. The only thing left to go over is the code from
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lines 2570 to 2770. This code simple implements a demonstration program that will
tell us that the menu selection routine works. What it does is ring the bell the same
number of times as the menu selection number. So, if ittem number four on the
menu is chosen, the bell rings four times and if item number five is chosen it rings
five times, etc. If item number seven is chosen, the program does an RTS and goes
back to the calling routine or mode.

1000 **kkdddhdhrhhdrrhhrrrhbhrrhrdiiibhhdts

1010 *** *k*k
1020 *** SAMPLE MENU PROGRAM *xx
1030 *** *kk
1040 **kdkkdhkrhdrkrhbrhbrhbrhirdrrdrrdrrsts
1050 *
1060 *
1070 *
1080 *
1090 * CONSTANTS
1100 *
0003- 1110 BOXLEN .EQ $03
0003- 1120 LFTMRG .EQ $03
0025- 1130 RTMRG .EQ $25
00AA- 1140 SYMBOL .EQ $AA
1150 *
1160 *
1170 * EQUATES
1180 *
0006- 1190 TXTPTR .EQ $06
0018- 1200 Cv2 .EQ $18
0019- 1210 CH2 .EQ $19
0024 1220 CH .EQ $24
0025- 1230 cv .EQ $25
FC22- 1240 BASCAL .EQ $FC22
FC58- 1250 HOME .EQ $FC58
FC9C- 1260 CLREOL .EQ $FC9C
FDOC- 1270 RDKEY .EQ $FDOC
FDED- 1280 couT .EQ $FDED
FF3A- 1290 BELL .EQ $FF3A
FF58- 1300 RETURN .EQ $FF58
1310 *
1320 *<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>