

NOW THAT YOU KNOW
APPLE ASSEl\IBLY LANGUAGE:
WHAT CAN YOU DO WITH IT?

· 1

• >

, I

~l

NOW THAT YOU KNOW
APPLE ASSEMBLY LANGUAGE:
WHAT CAN YOU DO WITH IT?

by
Jul~ H. Gilder

DataCraft, Inc.
2068-79th Street
Brooklyn, NY 11214

Published by

DataCraft, Inc.
2068 - 79th Street
Brooklyn, NY 11214

Copyright © 1985 by Jules H. Gilder
First Printing, August 1985

All rights reserved. Printed in the United States of America. No part of this book my be reproduced in
any form or by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored and
executed in a computer system, but they may not be reproduced for publication or distribution. While
every precaution has been taken in the preparation of this book, the publisher assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages, incidental or consequential ,
resulting from the use of the information contained herein.

ISBN 0-933913-001

Library of Congress Catalog Card number: 85-61928

To my father,
a quiet man who was always ready to lend a helping hand, offer

advice and just be there when he was needed. His love and
friendship will be greatly missed.

I .

TABLE OF CONTENTS

CHAPTER 1 - BEFORE YOU GET STARTED

This should not be your first book
What is an assembler? 1

CHAPTER 2 - GETTING INFORMATION
OUT OF YOUR COMPUTER

How the Simple Message Printer works 4
Pseudo op codes tell the assembler what to do 5
About high bits and ASCII code 6
Improving the Simple Message Printer 7
How the Improved Message Printer works 7
Printing very long messages 9
Another way to print long messages 10
An interesting way to use the stack 12
Decimal numbers can be output too 12
Branching instead of jumping 15
Separating the nibbles 17
Use the ROMs to help print decimals 20
Applying a number printing routine 21
Counting Applesoft program lines 22
Using the Applesoft Line Counter 26
Drawing borders and boxes on the screen 26

CHAPTER 3 - GETTING INFORMATION
INTO YOUR COMPUTER

A better way to read the keyboard 31
Entering text a line at a time 31
Entering as much text as you want 32
Entering decimal numbers 35

1

4

29

VII

Hexadecimal numbers can be entered too 40
Use a library to make programming easier 43
How to write a menu program 44
Using the stack to jump to a subroutine 45
Using an alphabetic menu 49

CHAPTER 4 - STEALING CONTROL OF THE OUTPUT 55

Fixing a problem with some parallel printers 56
Getting more out of your Epson printer 58
Set up your printer automatically 61
How to TAB past 40 columns 65
Getting rid of lowercase letter the easy way 70
Looking at those invisible control characters 72
Black-on-white video with no hardware modifications 74
Format your text into pages 76
Send your output to the disk instead of the printer 78

CHAPTER 5 - STEALING CONTROL OF THE INPUT 82

Customize your cursor 83
Dump your screen to a printer 84
Add a numeric key pad for free 88
Supplying characters from a different source
EXECing without a disk drive 92
Save keystrokes by using Applesoft shorthand
Teach your Apple to recognize lowercase letters
Taking advantage of the SHIFT key modification

91

96
101
103

CHAPTER 6 - USING SOUND IN YOUR PROGRAMS 108

How to generate a simple tone 109
Figuring out the frequency 109
Examining the Apple BELL routine 111
Let your keyboard tell you what's happening 112
RAT-A-TAT-TAT here's the Apple machine gun 112
Use swooping lasers for space games 114
Do your blasting with less memory 115
Fifteen bytes to an alarm signal 117
Simulate a Touch-Tone generator with your Apple 118
Let your computer send Morse code like a pro 121
How to copy any cassette program 126

VIII

CHAPI'ER 7 - LEARNING TO USE THE AMPERSAND 129

Data can be passed with the ampersand too 129
Converting between decimal and hexadecimal 131
Using the Applesoft ROM routines 132
Converting floating point to integer 132
Doing the hex to decimal conversion 132
Locate Applesoft program lines in memory 134
Appending two Applesoft programs together 139
How to restore lost Applesoft programs 145

CHAPI'ER 8 - EXPANDING APPLESOFT BASIC 150

Adding new commands to Applesoft
Understanding one of Applesoft's quirks

151
152

Garos and GOSUBs can be computed too 152
POKEing in two bytes at a time 156
Taking a double PEEK at memory 159
Running two Applesoft programs in memory together 161
How the two programs interact 163
Letting one program call the other 164
Add Applesoft function keys to your computer 168

APPENDIX A - ASCII CODE 177

APPENDIX B - APPLESOFT TOKEN LIST 178

APPENDIX C - SHIFT KEY MODIFICATION
INSTRUCTIONS 180

APPENDIX D - ADAPI'ING PROGRAMS
TO WORK WITH PRODOS 183

Finding space for long machine language programs 185

INDEX 187

IX

LIST OF PROGRAMS

CHAPTER 2 - Getting Information Out of Your Computer

1. Simple Message Printer 6
2. Improved Message Printer 8
3. Long Message Printer # 1 For Grouped Messages 10
4. Long Message Printer# 2 For In-Line Messages 11
5. Output A Decimal Number# 1 15
6. Output A Decimal Number# 2 19
7. Output A Decimal Number # 3 21
8. Applesoft Line Counter 24
9. Title Box 27

CHAPTER 3 - Getting Information Into Your Computer

1. Simple Read Keyboard Routine 30
2. Improved Read Keyboard Routine 31
3. Text Input Routine 32
4. Improved Text Input Routine 33
5. Input Integer Routine # 1 37
6. Input Integer Routine # 2 39
7. Input A Hex Number Routine 42
8. Sample Menu Program 46
9. Alphabetic Menu Program 50

CHAPTER 4 - Stealing Control of the Output

1. Parallel Printer Patch 57
2. Epson Printer Patch 59
3. Printer Setup Program 63
4. Printer Tabbing Driver 66
5. Lowercase Letter Filter 71
6. Show Control Characters 73
7. Screen Reverser 75
8. Page Formatter 77
9. Print To Disk Spooler 79

XI

CHAPTER 5 - Stealing Control of the Input

1. Custom Cursor 83
2. Screen Printer 86
3. Numeric Key Pad 90
4. In-Memory EXEC Simulator 93
5. Applesoft Shorthand 98
6. Lowercase Input Driver 104

CHAPTER 6 - Using Sound in Your Programs

1. Simple Tone Routine 110
2. Apple BELL Routine 111
3. Keyboard Clicker 113
4. Machine Gun Noise 115
5. Laser Swoop 1 116
6. Laser Swoop 2 117
7. Siren Program 118
8. Touch-Tone Simulator
9. Morse Code Generator
10. Cassette Duplicator

120
124

127

CHAPTER 7 - Learning to Use the Ampersand

1. Hex/Dec/Hex Converter 130
2. Applesoft Line Finder 137
3. Applesoft Append 142
4. &RES'IDRE 147

CHAPTER 8 - Expanding Applesoft BASIC

1. Computed Garo, GOSUB and LIST 153
2. Double Byte POKE 157
3. Double Byte PEEK 160
4. Applesoft Program Sharer 164
5. Applesoft Function Keys 171

APPENDIX D - Adapting Programs to Work With ProDOS

1. Show Control Characters ProDOS Version 184

XII

PREFACE
This book is designed to be used by the newcomer to assembly language pro

gramming, who has already spent the time required to learn assembly language
programming for the 6502 microprocessor and is now anxious to put his or her new
found knowledge to work.

The book comprises a work that took over six months to write and was totally
produced, from program writing to typesetting, on an Apple II computer. There
are over 50 programs in the book ranging from simple routines to help you input
and output data, to more sophisticated programs that improve on the hardware -
such as the Lowercase Input Driver - and programs that expand the Applesoft
language - such as those in Chapter 8. ·

In addition, there are many interesting programs that you will find useful in your
day-to-day work with the Apple. These include programs to help recover acciden
tally erased Applesoft programs, to format program listings and to improve the
interface to your printer, to name a few.

Most of the programs in Chapter 6 were reprinted through the kind permission
of Bob Sander-Cederlof of S-C Software. All of these programs deal with the
generation of sound on the Apple. Bob puts out a monthly newsletter called Apple
Assembly Line which is chock full of useful information for assembly language
programmers. He also sells one of the best assemblers for the Apple, the S-C
Macro Assembler. All of the programs in this book were written on that assembler.
A special 10-byte patch to the assembler was provided by Bob, so that all of the
assembled listings could be written directly to a text file. This file was then read by
the word processing program and incorporated into the text of the book. As a
result, none of the program listings were retyped, and thus you can be confident
that all program listings will run as they are.

The programs in this book will work with the entire Apple II series of com
puters. There are some changes in the F8 ROM in the I le and I le that make it
slightly incompatible with the II Plus. These occur in the KEYIN2 routine
($FD21). This entry point should not be used and programs should try to use the
KEYIN entry point ($FD 1 B). All the programs in this book have been designed to
overcome the difficulty posed by the differences in the input software.

These programs have been designed to run under DOS 3.3 although, in general,
with minor changes, they can be used with ProDOS as well. Appendix D provides
information you'll need to use these programs with ProDOS.

I'd like to say a special word of thanks to Dave Gordon, president ofDataMost,
for all the enthusiasm, encouragement and help that he has given me in producing
this book.

Chapter 1

BEFORE YOU GET STARTED
The 6502 microprocessor is probably the most widely used microprocessor in

personal computers. It is found in the Apple II and Apple/// families of computers,
the PET, CBM and VIC computers from Commodore, the Atari 400 and Atari 800
computers, and a variety of other computers and video games. Because of the
popularity of the 6502, many books have been written on how to program in 6502
assembly language.

With so many books on 6502 assembly language programming already availa
ble, you might be tempted to ask why another book is needed. That's easy. Few of
these books are machine specific, and even fewer were written especially for the
Apple computer. In addition, while these books can be helpful in learning the
basics of assembly language programming and familiarizing you with the various
op codes and their mnemonics, they fall short when it comes to supplying the
reader with hard information on how to perform specific tasks in assembly lan
guage.

This should not be your first book
This book is designed to pick up where the others leave off. Most of the books

that currently exist are designed to be used as a first book in assembly language
programming. This book is designed as a second book. This means that the book
was written with several assumptions in mind.

First, it is assumed that you have already read one of the existing books that
teach 6502 assembly language and that you are familiar with the mnemonics.
Another assumption that is made is that you have, or have access to, an Apple
computer and know how to operate it. Finally, it is desirable that you have an
assembler to use with your Apple.

What is an assembler?
For those of you who are not familiar with what an assembler is or does, it is a

program that allows you to write other programs using the assembly-language
mnemonics. Of course, it's possible to write the program out on paper, convert the
op codes to their hexadecimal equivalents and either enter the program from the
monitor, or POKE it into memory from BASIC, but that is a cumbersome and time
consuming way of doing things. By using an assembler program, we let the com
puter do all of the hard work. In addition, we gain a lot of flexibility as well as the

2 I Chapter 1

ability to make changes easily. Generally, an assembler consists of two major
parts:

(1) an editor that allows you to enter and manipulate your
program listing and descriptive comments, and

(2) a translator that converts the mnemonic codes to machine
code (hexadecimal numbers) and stores the resulting machine
language program in memory, or on tape or disk.

Some assemblers contain a third part, a printer module, that allows you to print
out the program that you entered with mnemonics along side of the machine
language translation of the mnemonics. However, most assemblers build this capa
bility into the translator module.

The various modules of the assembler can all be in memory at the same time
(coresident), or they can be loaded in separately as needed . The coresident assem
bler has the advantage that it works faster. There are probably at least a dozen
assemblers available for the Apple computer, but three of the best are the S-C
Macro Assembler from S-C Software, Merlin from Southwestern Data Systems
and Big MAC from Call A.P.P.L.E., which is only slightly less powerful than
Merlin (they were written by the same person), but is a lot less expensive. The
programs in this book were all written with the S-C Macro Assembler.

For those of you who are not too familiar with assemblers, I will explain just a
few of the features of the S-C Assembler that are used here. These may differ
slightly in the way they are implemented on other assemblers. To begin with , there
are pseudo op codes, which are really instructions to the assembler itself. All
pseudo op codes begin with a period. Some of the pseudo op codes that are used in
these programs are:

.OR means ORigin and it tells the assembler where the program that is being
assembled is designed to run in memory. If this location does not conflict with
memory locations used by the assembler, as the program is assembled, the object
code (program) it produces is stored at this location . If no origin address is speci
fied, it is assumed to be $800 .

. TA means Target Address and defines where the program code will be stored as
it is generated by the assembler. This pseudo op code must be used when the origin
of the program conflicts with the memory locations used by the assembler. In
practice, after the code has been assembled, it must by moved, with the Apple's
block memory move command, to the location in which it is designed to work. If
no target address is specified, it is assumed to be the same as the origin address .

• EQ means EQuate and is used to assign a value to a label. This value may be a
single or a double byte and it may represent an address or data .

. AS means ASCII String and is used to store the binary value of the ASCII
characters that follow it. The string itself must be enclosed in delimiters that the
user can define. I have chosen to use quotation marks for these delimiters. If the
first delimiter is preceded by a minus sign, the hexadecimal code generated will

Before You Get Started I 3

have the high bit set (which is used throughout this book). If the minus sign is not
present the high bit will not be set.

.HS means Hex String and is used to enter hexadecimal data , such as may be
found in conversion, or address tables. It assumes the presence of two digits for
every byte .

. DA means DAta and is used to define constants and/or variables.

Frequently in assembly language programs, it is necessary to find the address of
a labelled subroutine. In the programs listed in this book, to define the low byte of
the address the pound sign (#) is used and to define the high byte, the slash (/) is
used. Thus, if COUT equals $FDED, #COUT will return the value $ED, while
/COUT will return the value $FD. One final comment, all lines that start with an
asterisk(*) are considered comment lines by the assembler, and are ignored by it .

As a matter of convention, in this book all hexadecimal (hex) numbers will be
preceded by a dollar($) sign. Thus $10 is a hexadecimal number which is equal to
16 in decimal and 10 (without the dollar sign) is the decimal number ten.

Chapter2

GEl.11NG INFORMATION OUT OF
YOUR COMPUTER

Newcomers to assembly language programming often find that printing out text
from an assembly language program is difficult and inconvenient do to. Conse
quently, they frequently resort to combining machine language and BASIC pro
grams together so that BASIC can handle the message printing. However, by
developing some standard message printing routines in assembly language, you
will find that it is just as easy to print text from assembly language as it is from
BASIC.

To give you an idea of just how easy things can be, take a look at the program
listing for the SIMPLE MESSAGE PRINTER. The actual program itself (from
$800 to $80D) is only 14 bytes long. The bulk of the memory occupied by this
routine is for the text itself ($80E to $838) which is 43 bytes long, including the
terminating zero byte.

How the SIMPLE :MESSAGE PRINTER works
The program starts out by initializing the Y-register to zero in line 1160. This is

used as a pointer to the next character and is incremented by one (line 1200) each
time a character is printed. The character to be printed is fetched when the instruc
tion in line 1170 is performed. Here, the program is telling the computer to go to the
location to which the label TEXT has been assigned. Now, add the value that is in
the Y-register to this address and load the character that is located at this new
address into the accumulator. This method ofloading the accumulator is known as
Indexed Addressing.

To see how this works, let's take a look at an example. In this program, when the
value in the Y-register is 2, the character that is loaded into the accumulator is 'T'
whose hexadecimal equivalent is D4. This is because TEXT = $80E and it begins
with two carriage returns (the .HS 8D8D in line 1240). When $2 is added to $80E,
the result is $810. Looking at the listing you can see that the character located at
$810 is D4 or a 'T'.

After the character is loaded into the accumulator, a check is made in line 1180 to
see if the character was a zero. If it was, this is a sign that the end of the text has
been reached and the program then branches, without printing, to label ENDPRT
where an RTS instruction (return from subroutine) is executed, and control is
returned to the calling program or mode.

4

Getting Information Out Of Your Computer I 5

If the character was not a zero byte, then the COUT ($FDED) subroutine in the
Apple's ROM is called to print out the character in the accumulator. Upon return
ing from that subroutine call, the Y-register is incremented by one (line 1200) and a
check is made to see ifthe value in the Y-register passed 255 and returned to zero. If
it hasn't, and it shouldn't, the program branches back to line 1170 and the next
character is fetched.

The message to be printed starts at line 1240 and ends in line 1260 with a BRK
instruction. The BRK was used because when it is assembled it generates a zero
byte. As an alternative .HS 00 could have been used to generate the required zero
byte. The message begins with two carriage returns,' followed by the text listed in
line 1250.

Pseudo op codes tell the assembler what to do
Looking carefully at lines 1240, 1250 and also at line 1120, you will notice the

pseudo op codes that we spoke about earlier. These commands do not appear in the
final assembled program: They merely contain instructions to the assembler to
perform certain functions. In line 1120 the .EQ pseudo op code tells the assembler
to assign the address $FDED to the label COUT. In line 1240, the .HS pseudo op
code tells the assembler that all the data that follows should be considered hexade
cimal data.

6 I Chapter 2

The .AS pseudo op code in line 1250 tells the assembler that the information that
follows, is an ASCII string (text). Most assemblers require that the text be enclosed
by delimiters (quotation marks, slashes, etc). This assembler has an additional
feature in that it allows you decide whether or not you want the high bit of the
character set or not. This is done by the presence or absence of a hyphen, or minus
sign,(-) after the .AS pseudo op code and before the quotation mark. If the hyphen
is present, the high bit is set, if it is absent, the high bit remains a zero.

About high bits and ASCII code
Numbers, letters and certain standard symbols can be represented in the com

puter by a special code known as ASCII (for American Standard Code for Informa
tion Interchange - see Appendix A). This code uses 7 bits to code 128 numbers,
letters and symbols. Since there are 8 bits in a byte, there's one extra bit left over.

The Apple computer uses the eighth (or high) bit to determine whether or not the
character displayed on a video screen will be displayed normally or in a flashing
mode. If the high bit is not set, the character will flash , if it is set it will be displayed

FDED-

0800- AO 00
0802- B9 OE 08
OBOS- FO 06
0807- 20 ED FD
080A- CS
080B- DO FS
080D- 60

OBOE- SD SD
0810- D4 CS C9
0813- D3 AO C9
0816- D3 AO D4
0819- CS CS AO
081C- D3 Cl CD
081F- DO CC CS
0822- AO CD CS
082S- D3 D3 Cl
0828- C7 CS AO
082B- D4 CF AO
082E- C2 CS AO
0831- DO D2 C9
0834- CE D4 CS
0837- C4
0838- 00

1000 *************************************
1010 *** ***
1020 *** SIMPLE MESSAGE PRINTER ***
1030 *** ***
1040 *************************************
lOSO *
1060 *
1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
1120 COUT .EQ $FDED
1130 *
1140 *
11SO *
1160 LDY #$0
1170 LOOP LDA TEXT , Y
1180 BEQ ENDPRT
1190 J SR COUT
1200 INY
1210 BNE LOOP
1220 ENDPRT RTS
1230 *
1240 TEXT . HS 8D8D

Ini t ialize po inte r
Ge t c hara cte r
Don e yet?
No , print character
Incre ment po inte r
Ge t next cha r acter
Re turn t o c a ller

12SO .AS -"THI S I S THE SAMPLE MESSAGE TO BE PRINTED"
1260 BRK

Getting Information Out Of Your Computer I 7

normally. A bit is said to be set, or on, when its value is equal to 1 and reset, or off,
when its value is equal to 0.

Improving the SIMPLE MESSAGE PRINTER
While the SIMPLE MESSAGE PRINTER can be easily used to output text from

an assembly language program, it does have a major drawback. The program is
what can be referred to as an in-line routine, meaning that every time you want to
print out a message, you have to add another 13 bytes (most of the time you won't
need the RTS instruction at the end) to your program for the printing routine .
While that might not seem like a lot, you'd be surprised at just how quickly that
adds up.

A more reasonable way to do things is to convert the program into a subroutine
that can be jumped to whenever it is needed. That is exactly what has been done in
the IMPROVED MESSAGE PRINTER. As you can see by glancing at the listing,
the program has been broken down into two major parts: the main program and the
message printing subroutine.

How the IMPROVED MESSAGE PRINTER works
The main program illustrates how the printing subroutine is called . In line 1200

the low-order byte of the address of the label TEXT is loaded into the accumulator,
while in line 1210, the high-order byte of the address of the TEXT label is loaded
into the Y-register. Now that the program knows where the mer.sage that we want to
print is located in memory, all it has to do is jump to the message printing subrou
tine which begins on line 1280.

The first thing that the message printing subroutine does is to store the address of
the text to be printed in a two-byte pointer (low byte first) on zero page. Once that is
done, the Y-register is reset to zero, so that it can be used as a pointer (or index) to
the next character.

One important point you should realize when using this subroutine is that what
ever is in the accumulator and the Y-register before you use this routine will be
destroyed. So if you need that information, you should store it in a temporary
location until you exit the printing routine and then load the values back into their
respective places.

The type of indexed addressing (line 1310) used in the subroutine is slightly
different from that used in the previous program. This method of loading the
accumulator is known as Indirect Indexed Addressing, also sometimes referred to
as Post-Indexing. In this mode, the computer goes to the location indicated by
TXTPTR, which has been defined in line 1130 as location $06 on page zero of
memory, and looks in locations $06 and $07 for the address of the text to be
printed. Once it has this address, it adds to it the value stored in the Y-register to get
the real address that is desired and then loads the accumulator with the information
from that address. The rest of the program is identical to that of the previous one. A

8 I Chapter 2

test is made for a zero byte and if none is found, the character is printed and the next
character is retrieved.

This program is quite useful and as you progress through this book, you will find
that it has been used extensively as a subroutine in other programs. The subroutine
itself is 17 bytes long and requires 7 bytes of code to set up the call to the subrou
tine. So, it is easy to see that if you have more than 2 messages to print in a
program, it pays to use this program rather than the former one.

0006-
FDED-

0800- A9 19
0802- AO 08
0804- 20 08 08
0807- 60

1000 *************************************
1010 *** ***
1020 *** IMPROVED MESSAGE PRINTER ***
1030 *** ***
1040 *************************************
lOSO *
1060 *
1070 *
1080 *
1090 *
1100 *
1110 * EQUATES
1120 *
1130 TXTPTR .EQ $06
1140 COUT .EQ $FDED
llSO *
1160 *
1170 * This is the main program, which calls
1180 * the message printing subroutine.
1190 *
1200
1210
1220
1230
1240 *
12SO *

LDA #TEXT
LDY /TEXT
JSR MSGPRT
RTS

Get address low byte.
Get address high byte.
Print text.

1260 * This is the message printing routine.
1270 *
1280 MSGPRT
1290
1300
1310 LOOP
1320

STA TXTPTR
STY TXTPTR+l
LDY #$0

Store pointer
to text.
Init counter.
Get character.
Done yet?

0808- 8S 06
080A- 84 07
080C- AO 00
080E- Bl 06
0810- FO 06
0812- 20 ED
081S- C8
0816- DO F6
0818- 60

FD 1330
1340
13SO

LDA (TXTPTR) , Y
BEQ ENDPRT
JSR COUT
INY
BNE LOOP
RTS

No, print character .
Increment counter.
Get next character.
Return to caller.

0819- 8D 8D
081B- D4 C8 C9
081E- D3 AO C9
0821- D3 AO D4
0824- C8 CS AO
0827- D3 Cl CD
082A- DO CC CS
082D- AO CD CS
0830- D3 D3 Cl
0833- C7 CS AO
0836- D4 CF AO
0839- C2 CS AO
083C- DO D2 C9
083F- CE D4 CS
0842- C4
0843- 00

1360 ENDPRT
1370 *
1380 TEXT

1390
1400

.HS 8D8D

. AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
BRK

Getting Information Out Of Your Computer I 9

Printing very long messages
As I indicated earlier, you will find that the IMPROVED MESSAGE PRINTER

can be used for most of your text output applications. It is possible however, that
under certain circumstances, you will find that not all of your text is being printed
and there is no apparent reason for it. It's not really as mysterious as it may seem,
because the two printing routines that we have discussed until now have had one
thing in common, they are limited to a maximum message length of 255 charac
ters. The reason for this can be found in lines 1340 and 1350 of the IMPROVED
MESSAGE PRINTER program.

In line 1340, the Y-register is incremented. The INY instruction affects the Zero
(or Z) flag bit in the status register, and ifthe INY operation results in the Y-register
being set equal to zero, the Z flag is set. If the Y-register does not become zero, the
Z flag is reset. In line 1350, the BNE instruction is used to see ifthe Y-register has
been incremented past 255 and returned to zero (remember the Y-register is an 8-
bit register and can only hold values up to 255).

In most cases, the Y-register never gets to zero and the message printing subrou
tine is terminated instead by the zero that follows the text. But for text containing
more than 255 characters, the terminating zero that follows the text is never
reached and instead, the Y-register becomes zero and terminates the routine . You
can check this out yourself by simply using the previous program and putting in a
message that is longer than 255 characters.

To overcome this size limitation, instead ofusing the single byte Y-register as the
text pointer, we must use a two-byte pointer to the text. Such a pointer will techni
cally enable us to print out up to 65,536 characters. In real life, we must leave some
space in memory for the program and various parts of the Apple's operating
system. But in essence, a two-byte pointer will let us print out messages of virtually
any length.

The changes required to accommodate a two-byte pointer can be seen in the
listing for Long Message Printer No. 1. The method used to call the printing
subroutine (starting at line 1200) remains the same as that for the previous pro
gram, as does most of the remainder of the program. The only difference is that the
INY in line 1340 of the previous program has been replaced by three lines of code
that increment TXTPfR instead of the Y-register.

Line 1340 increments the low byte of TXTPfR, while line 1350 checks if this
incrementing has caused this low byte to increment past 255 and back to zero. If it
has, then the high-order byte, TXTPfR + 1, is also incremented by one. In any
case, after adjusting TXTPfR, the program jumps back to LOOP in line 1310
where the next character is fetched.

10 I Chapter 2

0006-
FDED-

OBOO- A9 1E
OB02- AO OB
OB04- 20 OB OB
OB07- 60

OBOB- BS 06
OBOA- B4 07
OBOC- AO 00
OBOE- Bl 06
OBlO- FO OB
0812- 20 ED FD
OBlS- E6 06
OB17- DO FS
OB19- E6 07
OBlB- DO Fl
OBlD- 60

OBlE- BD BD
OB20- D4 CB C9
OB23- D3 AO C9
OB26- D3 AO D4
OB29- CB cs AO
OB2C- D3 Cl CD
OB2F- DO cc cs
OB32- AO CD CS
OB3S- D3 D3 Cl
OB3B- C7 CS AO
OB3B- D4 CF AO
OB3E- C2 CS AO
0841- DO D2 C9
OB44- CE D4 CS
OB47- C4
OB4B- 00

1000 *************************************
1010 *** ***
1020 *** LONG MESSAGE PRINTER NO. 1 ***
1030 *** FOR GROUPED MESSAGES ***
1040 *** ***
lOSO *************************************
1060 *
1070 *
lOBO *
1090 *
1100 *
1110 * EQUATES
1120 *
1130 TXTPTR .EQ $06
1140 GOUT .EQ $FDED
llSO *
1160 *
1170 * This i s the main program, which ca lls
llBO * the message printing subroutine.
1190 *
1200
1210
1220
1230
1240 *
12SO *

LDA #TEXT
LDY /TEXT
JSR MSGPRT
RTS

1260 *This is the mes sag~ printing routine.
1270 *
12BO MSGPRT STA TXTPTR Sav e address of TEXT in
1290 STY TXTPTR+l TXTPTR and TXTPTR~l.
1300 LDY #$0 Initialize offset to zero .
1310 LOOP LDA (TXTPTR),Y Get next character to print.
1320 BEQ ENDPRT Done yet?
1330 JSR GOUT No, print character.
1340 INC TXTPTR Increment TXTPTR low byte .
13SO BNE LOOP If not zero get next charac t er.
1360 INC TXTPTR+l Othe rwis e increment TXTPTR+l .
1370 BNE LOOP Ge t next character .
13BO ENDPRT RTS Re turn to caller.
1390 *
1400 TEXT

1410
1420 BRK

.HS BDBD

.AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"

Another way to print long messages

For those of you who firmly believe that "Variety is the spice of life", we have
another method of printing out long messages. This one has a little different
structure than all of the previous programs. Whereas former programs looked at
the label associated with the text to be printed and passed its location to the printing
subroutine, this program doesn't even require the message to have a label. I've only
left it in for purposes of continuity.

-

0006-
FDED-

0800- 20 2F 08
0803- SD SD
OBOS- D4 CS C9
0808- D3 AO C9
OSOB- D3 AO D4
OBOE- CS CS AO
0811- D3 Cl CD
0814- DO CC CS
0817- AO CD CS
081A- D3 D3 Cl
081D- C7 CS AO
0820- D4 CF AO
0823- C2 CS AO
0826- DO D2 C9
0829- CE D4 CS
082C- C4
082D- 00
082E- 60

082F- 68
0830- SS 06
0832- 68
0833- SS 07
083S- AO 01
0837- Bl 06
0839- FO 09
083B- 20 ED FD
083E- 20 4D 08
0841- 4C 37 08

0844- 20 4D 08
0847- 20 4D 08
084A- 6C 06 00

084D- E6 06
084F- DO 02
0851- E6 07
0853- 60

Getting Information Out Of Your Computer I I I

1000 *************************************
1010 *** ***
1020 *** LONG MESSAGE PRINTER NO. 2 ***
1030 *** FOR IN-LINE MESSAGES ***
1040 *** ***
1050 *************************************
1060 *
1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
1120 TXTPTR .EQ $06
1130 GOUT .EQ $FDED
1140 *
llSO *
1160 *
1170 * This is the main program, which calls
1180 * the message printing subroutine.
1190 *
1200 JSR MSGPRT Print message that follows .
1210 TEXT .HS SDSD

1220
1230
1240
1250 *
1260 *

.AS -"THIS IS THE SAMPLE MESSAGE TO BE PRINTED"
BRK End of message marker.
RTS

1270 * This is the message printing routine.
1280 *
1290 MSGPRT
1300
1310
1320
1330
1340 LOOP
13SO
1360
1370
1380
1390 *
1400 *

PLA
STA TXTPTR
PLA
STA TXTPTR+l
LDY #$01
LDA (TXTPTR) , Y
BEQ ENDPRT
JSR GOUT
JSR INCPTR
JMP LOOP

Pull address of TEXT-1
off the stack and save it
in TXTPTR and TXTPTR+l.

Set Y-register to 1 .
Get next character to print.
Done yet?
No, print character.
Increment TXTPTR by 1 .
Get the next charac t e r .

1410 * The end of the text has been reached
1420 * so increment TXTPTR twice to get the
1430 * correct address to return to .
1440 *
1450 ENDPRT JSR INCPTR
1460 JSR INCPTR
1470 JMP (TXTPTR)
1480 *
1490 *
lSOO * This is where TXTPTR is incremented.
1510 * First the low byte is incremented and
1S20 * if it passes zero as it's incremented,
1S30 * then the high byte is incremented too.
1S40 *
lSSO INCPTR
1S60
1S70
lSSO RETURN

INC TXTPTR
BNE RETURN
INC TXTPTR+l
RTS

12 I Chapter 2

At first glance, the operation of the program is unclear and it even looks like it is
going to crash right after it returns from its jump to the message printing subrou
tine, because it looks like it is going to try to execute the text as machine language
instructions. Let me assure you this is not going to happen.

An interesting way to use the stack
Whenever the 6502 microprocessor executes a JSR instruction, as it does in line

1200, the address minus one, of the next instruction to be executed is pushed onto
the stack (which takes up page 1 of memory) . Data are pushed onto the stack
starting at $1FF and work their way down to $100. When the JSR in line 1200 is
executed, the microprocessor doesn't know that what follows the JSR is not an
other instruction, but just data, so it automatically pushes the address of TEXT-1
onto the stack. The address is pushed onto the stack high byte first, low byte last.

The first thing that the message printing subroutine does is to pull the address off
the stack, low byte first (line 1290) and store it in TXTPTR and TXTPTR + 1. To
compensate for the minus 1, TXTPTR could either be incremented or the Y
register can be set to 1 instead of 0, which is what was done here (line 1330). This
will not pose us any problems later on because the Y-register always remains the
same. Only TXTPTR and TXTPTR + 1 get incremented.

In lines 1340 to 1360 the program gets the next character, checks to see if the end
of the message has been reached and prints out the character if it hasn't. In line 1370
the program jumps to a subroutine that increments TXTPTR and TXTPTR + 1 if
necessary. After that, the program goes back to get the next character.

When the program does detect the end of message marker (the zero byte) it
branches to ENDPRT in line 1450 where TXTPTR is incremented twice. It is
incremented once to get past the BRK instruction, to which it is pointing as it enters
ENDPRT, and incremented a second time to compensate for the -1 associated with
the original address of TEXT. After incrementing it twice, therefore, TXTPTR is
pointing to the instruction immediately following the BRK. This turns out to be the
RTS instruction in line 1240. So on exiting ENDPRT, the program does an indirect
jump through TXTPTR (line 1470) to return to its proper place in the program.

Decimal numbers can be output too
Until now, we've seen how we can print out textual information. But what do we

do if we want to print out some numbers that were generated by our machine
language program and reside in memory in a hexadecimal form? If we wanted to
print out the number in hexadecimal, all we'd have to do is to load the byte(s) into
the accumulator and then jump to the PRBYTE routine in the Apple monitor
ROM, located at $FDDA. But, if we want to print the hexadecimal number out as a
decimal number, which most ofus are more familiar with, then we have to do some
sort of number conversion. Both the 6502 microprocessor and the Apple system
are very versatile, and you will quickly realize that there is more than one way to
write an assembly language program. To illustrate this point, the next three pro-

Getting Information Out Of Your Computer I 13

gram will all perform the same task: printing out the decimal equivalent of a two
byte hexadecimal number. If you look carefully at the previous sentence, you'll
notice that I indicated that the task was printing out the decimal equivalent and not
necessarily converting to the decimal equivalent. The distinction will be made
clear shortly when we look at the first ofthe three programs.

The heart of this first program is a short routine that Steve Wozniak, one of the
founders of Apple, wrote a few years ago and was published in the San Francisco
Apple Core's Cider Press Magazine. Normally, when converting an integer from
one base to another, the integer is repeatedly divided by the desired base. The
remainder of each division becomes successively more significant digits of the
answer. The process continues until the base can no longer be divided into the
argument . To illustrate how this works let's convert 32 in decimal to its hexadeci
mal equivalent.

32/ 16 = 2 with a remainder R = 0

2/ 16 = 0 and R = 2

Before you get excited and say that 2/ 16 is .125, remember that we are dealing
with integer numbers only, no fractions. So if a result is less than 1, it's set equal to
zero and a remainder. Earlier we said that as the division progresses, the remain
ders become successively more significant digits of the answer. This means that
the last remainder (2) is the most significant digit of the answer. Hence, 32 decimal
is equal to $20 hexadecimal.

The process works in the reverse direction just as well. Let's convert $20 hex
back to its decimal equivalent.

$20/$A = $3 and R = 2

$3/$A = $0 and R = 3

Here we divide $20 by the base we wish to convert to, which is 10 decimal or $A
in hexadecimal. Once again, by taking the last remainder as our most significant
digit and reading back we find that $20 hex is equal to 32 decimal , which is really
no great surprise.

A shorter and faster conversion method can be implemented on microproces
sors that have a decimal mode, such as the 6502 . In this program, the two-byte hex
number that is to be converted is stored on page zero in locations $50 and $51
which are known as LINNUM and LINNUM + 1. The answer, in binary coded
decimal (BCD) form is stored in location TEMP and the two locations that follow
it. These are located from $6 to $8 on page 0 of memory. TEMP contains the lowest
order digit and TEMP+ 2 the highest order.

For those of you who are unfamiliar with just what a binary coded decimal is, let
me explain. If from BASIC you typed POKE 0,32 and then you went into monitor
mode and looked at location 0, you'd find the hexadecimal number $20 there,

14 I Chapter 2

which we already know is the hex equivalent of 32. However, if I had a program
that converted $20 to decimal and stored the digits 3 and 2 as a single byte in a
single memory location, I would have a binary coded decimal. So, if from the
monitor you were to type 0:32 and then a press RETURN, you could say that you
stored 32 as a binary coded decimal into location zero. Having done this, you can
now use the Apple's monitor routine PRBYTE to print the byte out to the screen.

Thus if you load the accumulator with 32 and do a JSR to PRBYTE ($FDDA) ,
the number 32 will appear on you screen. You can see therefore, that we can
convert a number to BCD and then use the PRBYTE routine to display it. As far as
the viewer is concerned, he is seeing a decimal number, even though ifhe looked in
memory he would actually see BCD numbers. The advantage to using BCD num
bers is that they require less memory. A 5-digit decimal number requires 5 mem
ory locations, one for each digit. The same number in BCD form only requires 2. 5
memory locations because 2 digits are packed into every byte. Thus the number
65535 would be represented in BCD as the three bytes 06 55 35. In our program,
these numbers are stored in memory in reverse order: 35 55 06.

In the program, OUTPUT A DECIMAL NUMBER #1, the section of code
from 1280 to 1450 converts the two-byte hex number in LINNUM to its BCD
equivalent. Lines 1280 to 1300 clear the two low order bytes of the answer. The
high order byte does not have to be cleared because any data stored there will be
shifted out automatically during the calculation. In line 1310, a flag is initialized to
zero. The flag will be used to determine whether or not a zero that is to be printed
out is a leading zero. This is done to enable us to suppress leading zeroes so we
don't get 065535 instead of 65535, which is what we really want.

The next thing that is done is to switch the 6502 into its decimal arithmetic mode
in line 1320. In line 1330, we are setting up a loop that will be performed 16 ($10)
times. Within this loop, the numbers in LINNUM and LINNUM + 1 will be
shifted left , pushing the most significant bit into the carry. Then, the values in
TEMP, TEMP+ 1 and TEMP+ 2 are doubled and the carry is added to them.

The low and middle order bytes are doubled by adding each byte to itself (lines
1360 to 1410) . The high order byte is doubled by shifting its contents left once (line
1420). By doing this, there is no need to initialize TEMP + 2 to zero at the begin
ning, because the original contents will be shifted out during execution.

This entire process (lines 1340 to 1440) is performed 16 times to convert both
hex bytes into 5 BCD digits. When the calculations are done, it is very important io
return the 6502 microprocessor to its hexadecimal calculation mode by executing
the CLD (clear decimal mode) instruction. Otherwise the remainder of the pro
gram will not work properly.

Once the conversion has been completed, the program then proceeds to print out
the numbers. Since most of us are not used to seeing numbers with leading zeroes,
I've included routines that check to see if a zero that is a candidate for being printed
is a leading zero and if it is, to skip it and get the next digit.

The routine starting at line 1580 sets up a loop that retrieves the three BCD bytes.
As a byte is loaded into the accumulator (line 1600), a check is made to see if its

Getting Information Out Of Your Computer I 15

value is zero. If it is, a second test is performed to see if this is the first digit to be
printed. If it is the first digit, LZFLAG will be 0 otherwise it will contain some
nonzero value. If a zero byte is the first byte to be printed, the byte is discarded (line
1630) and the program jumps back to line 1590 to get the next byte.

If the whole byte is not equal to zero, a test is made (at lines 1720 and 1730) to see
ifthe most significant digit (nibble) of the byte is zero. (NITTE: This will always be
the case with the byte at TEMP+ 2.) If it's not, then LZFLAG is set to indicate that
a digit has already been printed, the complete original byte is retrieved (we had to
modify it to do our test) and the byte is printed.

On the other hand, if the most significant nibble of the byte is zero, then the
program jumps to line 1990 to find out if a byte has already been printed. If one has
then this one is also printed. If nothing has been printed yet, the original byte (with
its leading zero) is retrieved and stored in LZFLAG to make it nonzero, and then
the right most, or least significant digit of the byte is printed using the PRHEX
routine in the Apple ROM. Finally, in line 2100 the V flag of the status register is
cleared and in line 2110 a branch on V clear instruction is executed. This causes the
program to branch back to line 1820 and check to see if there are anymore digits to
be printed.

Branching instead of jumping
Instead of using the CLV and BVC op codes in 2100 and 2110, we could simply

have put in a JMP instruction. However, I wanted you to see how it's possible to
implement a function - branch always - that does not exist in the 6502. Other
microprocessors, such as the 6800 and the 65C02, have a BRA instruction which
unconditionally branches to the desired location.

In the Apple, the V flag of the status register is very rarely used, so it's generally
fairly safe to clear it and then execute a BVC instruction. Here's the listing of the
program we have been discussing.

0006-
0009-
0050-
FDDA
FDE3-

1000 *************************************
1010 *** ***
1020 *** OUTPUT A DECIMAL NUMBER # 1 ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 * EQUATES
1120 *
1130 TEMP
1140 LZFLAG
1150 LINNUM
1160 PRBYTE
1170 PRHEX
1180 *
1190 *

.EQ $6

.EQ $9

. EQ $50

.EQ $FDDA

.EQ $FDE3

1200 * This section of code converts a
1210 * 2-byte unsigned binary argument in
1220 * LINNUM and LINNUM+1 to a binary coded
1230 * decimal number packed into 3 adjacent
1240 * locations starting at TEMP, low byte

16 I Chapter 2

0800- A9 00
0802- 8S 06
0804- 8S 07
0806- 8S 09
0808- F8
0809- AO 10
080B- 06 SO
080D- 26 Sl
080F- AS 06
0811- 6S 06
0813- 8S 06
081S- AS 07
0817- 6S 07
0819- 8S 07
081B- 26 08
081D- 88
081E- DO EB
0820- D8

0821- A2 03
0823- CA
0824- BS 06
0826- DO 06
0828- cs 09
082A- FO F7
082C- DO 08

082E- 48
082F- 29 FO
0831- FO OB
0833- 8S 09
083S- 68
0836- 20 DA FD

0839- EO 00
083B- DO E6
083D- 60

12SO * first. This conversion routine was
1260 * written by Steve Wozniak.
1270 *
1280
1290
1300
1310
1320
1330
1340 LOOP
13SO
1360
1370
1380
1390
1400
1410
1420
1430
1440
14SO
1460 *
1470 *

LDA
STA
STA
STA
SED

#$0
TEMP
TEMP+l
LZFLAG

LDY #$10
ASL LINNUM
ROL LINNUM+l
LDA TEMP
ADC TEMP
STA TEMP
LDA TEMP+l
ADC TEMP+l
STA TEMP+l
ROL TEMP+2
DEY
BNE LOOP
GLD

Clear result

Clear leading 0 flag.
Set decimal mode.
Set for 16 bits
Shift bit out
of binary argument.

Double decimal
result and add carry.

Shift last bit

Repeat 16 times.
Clear decimal mode.

1480 * This section contains the loop that
1490 * fetches each of the 3 bytes that
1SOO * contain the packed binary-coded
1S10 * decimal number and checks to see if
1S20 * both numbers in the byte are zero.
1S30 * If they are, a further check is made
1S40 * to see if this is the first byte to
1SSO * be printed, in which case the whole
1S60 * byte is discarded.
1S70 *
1S80
1S90 NEXT
1600
1610
1620
1630
1640
16SO *
1660 *

LDX
DEX
LDA
BNE
CMP
BEQ
BNE

#$3

TEMP,X
CHKLDO
LZFLAG
NEXT
PRINT2

Count 3 bytes.

Get a byte.
Check for leading zero.
Yes, i s it the first?
Yes, discard.
No, print the byte .

1670 * This section checks to see if the
1680 * byte being processed contains a
1690 * leading zero.
1700 *
1710 CHKLDO
1720
1730
1740
17SO PRINTl
1760 PRINTZ
1770 *
1780 *

PHA
AND #$FO
BEQ LEADO
STA LZFLAG
PLA
JSR PRBYTE

Save the accumulator.
Leading zero?
If zero, process it.
It's not so set flag.
Restore accumulator.
Print byte in accumulator.

1790 * Here the program checks to see if
1800 * there is anymore data to output.
1810 *
1820 CHKDON CPX #$0
1830 BNE NEXT
1840 RTS
18SO *
1860 *
1870 * This routine checks to see if the
1880 * byte containing the leading zero is
1890 * the first byte to be output. If it
1900 * is it throws away the zero and prints
1910 *a single digit. If it isn't, it
1920 * restores the byte (which has been
1930 * destroyed by the testing) and prints
1940 * it out. The leading zero flag is
19SO * also set here so that the program
1960 *will know it doesn't have to worry
1970 * about them any more.

083E- AS 09
0840- DO F3
0842- 68
0843- 85 09

1980 *
1990 LEADO
2000
2010
2020
2030 *
2040 *

Getting Information Out Of Your Computer I 17

LDA LZFLAG
BNE PRINTl
PLA
STA LZFLAG

First digit ?
No, print it.
Yes, set flag.

2050 * This section takes a byte with a
2060 * leading zero and prints it out as a
2070 * single digit without the leading zero
2080 *

0845- 20 E3 FD 2090
0848- B8 2100
0849- 50 EE 2110

JSR PRHEX
CLV
BVC CHKDON

Print 1 digit
Relative jump
always taken.

As I mentioned earlier, while the previous program will print out decimal num
bers to the screen, it doesn't actually generate them as five individual bytes. In
some cases, it is desirable to generate the ASCII equivalent of each of the individ
ual digits. To produce numbers on the Apple in normal mode, the digits should be
in the $BO to $B9 range (for 0 to 9).

By using the same conversion routine we used in the previous program, we can
quickly write a new program that will generate the ASCII code for each individual
digit. The first part of this new program (lines 1290 to 1460) is identical to the
routine in lines 1280 to 1450 of the previous program. After the conversion to a
binary-coded decimal has been made, all we have to do is retrieve the individual
digits that have been packed into three bytes starting at TEMP, and OR them with
the hex value $BO to make them ASCII. This is what happens starting at line 1550
in the second program that outputs decimal numbers;

Separating the nibbles
Indexed addressing with the X-register (line 1560) is used to retrieve the BCD

data, least significant byte first. The first thing that is done is to separate the two
digits that have been combined to form a single byte, into individual bytes. In line
1570 the least significant digit of the byte is extracted by zeroing out the most
significant digit. So, if the BCD value of a byte was $13 and we ANDed it with $OF,
we'd get:

00010011 = $13
0000111 l= $OF
0000001 l = $03

This value is then ORed in line 1580 with $BO to produce the ASCII value and
the newly converted digit is temporarily stored on the stack (line 1590) until all
digits have been processed and we're ready to print them.

The next thing to do is to retrieve the high order digit of the same byte. So, we
reload that byte into the accumulator (line 1600) and then perform the logical shift
right (LSR) instruction four times (lines 1610 to 1640). What this does is to move
the most significant digit of a byte into the least significant position while at the
same time storing a zero in the most significant digit. So, for the same byte
containing the binary coded number $13, we get:

18 I Chapter 2

Separating the nibbles of a byte.

1st shift 2nd shift 3rd shift 4th shift
00010011--+ 00001001--+00000100--+00000010--+ 00000001

Once this operation is completed, that value in the accumulator is ORed with
$BO (line 1650) and so another ASCII digit is created and temporarily stored on the
stack. This operation continues until all 6 digits (including the leading zero) in the
three bytes are converted .

After all of the ASCII numbers have been stored on the stack, they are pulled off
one at a time (line 1790), a check is made to see ifthe number is a leading zero and
if it's not the number is printed using the Apple's standard output routine COUT
($FDED) . After all of the numbers have been pulled off the stack and printed, the
program executes an RTS instruction, returning control to the calling program or
mode.

0006-
0009-
OOlB
OOSO
FDED-

OBOO- A9 00
OB02- BS 06
OB04- BS 07
OB06- BS 09
OBOB- FB
OB09- AO 10
OBOB- 06 SO
OBOD- 26 Sl
OBOF- AS 06
OBll- 6S 06
OB13- BS 06
OBlS- AS 07
OB17- 6S 07
OB19- BS 07
OBlB- 26 OB
OBlD- BB
OBlE- DO EB
OB20- DB

OB21- A2 00
OB23- BS 06
OB2S- 29 OF
OB27- 09 BO
OB29- 4B
OB2A- BS 06
OB2C- 4A
OB2D- 4A
OB2E- 4A
OB2F- 4A
OB30- 09 BO
OB32- 4B
OB33- EB
OB34- EO 03
OB36- DO EB

Getting Information Out Of Your Computer I 19

1000 *************************************
1010 *** ***
1020 *** OUTPUT A DECIMAL NUMBER # 2 ***
1030 *** ***
1040 *** COPYRIGHT (C) 19B2 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
lOBO *************************************
1090 *
1100 *
1110 * EQUATES
1120 *
1130 TEMP
1140 LZFLAG
llSO YSAVE
1160 LINNUM
1170 GOUT
llBO *
1190 *

. EQ $6

.EQ $9

.EQ $1B

.EQ $SO

.EQ $FDED

1200 * This section of code converts a
1210 * 2-byte unsigned binary argument in
1220 * LINNUM and LINNUM+l t o a binary coded
1230 * decimal number packed into 3 adjacent
1240 * locations starting at TEMP, low byte
12SO * first. This conversion routine was
1260 * written by Steve Wozniak .
1270 *
12BO *
1290
1300
1310
1320
1330
1340
13SO LOOP
1360
1370
13BO
1390
1400
1410
1420
1430
1440
14SO
1460
1470 *
14BO *

LDA #$0
STA TEMP
STA TEMP+l
STA LZFLAG
SED
LDY #$10
ASL LINNUM
ROL LINNUM+l
LDA TEMP
ADC TEMP
STA TEMP
LDA TEMP+l
ADC TEMP+l
STA TEMP+l
ROL TEMP+2
DEY
BNE LOOP
GLD

Clear result

Clear l eading 0 flag.
Set decimal mode .
Set for 16 bits
Shift bit out
of binary argument.

Double decimal
result and add carry.

Shift last bit

Repeat 16 times .
Clear decimal mode.

1490 * This s ection of code converts the
lSOO * packed binary-coded decimal number
lSlO * into ASCII characters (low order byte
1S20 * first) and stores them t empor arily on
1S30 * the stack.
1S40 *
lSSO
1S60 NEXT
1S70
lSBO
1S90
1600
1610
1620
1630
1640
16SO
1660
1670
16BO
1690
1700 *
1710 *

LDX #$0
LDA TEMP,X
AND #$OF
ORA #$BO
PHA
LDA TEMP,X
LSR
LSR
LSR
LSR
ORA #$BO
PHA
INX
CPX #$3
BNE NEXT

Ge t byt e and
mask off 4 MSB
make it ASCII .
Save on s tack.
Ge t same byte
and move 4 MSB
to 4 LSBs .

Make i t ASCII.
Save on stack.

Done yet?
No, get more.

20 I Chapter 2

0838- AO 06
083A- 68
083B- C9 BO
083D- DO OA
083F- A6 09
0841- DO 06
0843- 88
0844- DO F4
0846- 4C ED FD
0849- 85 09
084B- 20 ED FD
084E- 88
084F- DO E9
0851- 60

1720
1730
1740
1750
1760
1770
1780

This section of code pulls the
converted ASCII digits off the stack
and prints them. In doing this it
checks for leading zeroes and
discards them.

1790 PRINTl
1800

LDY #$6
PLA
CMP #$BO
BNE PRINT2
LDX LZFLAG
BNE PRINT2
DEY

Set for 5 numbers.
Get a number.
Is it a zero?

1810
1820
1830
1840
1850
1860
1870 PRINT2
1880
1890
1900
2000

BNE PRINTl
JMP GOUT
STA LZFLAG
JSR GOUT
DEY
BNE PRINTl
RTS

No, print it.
Yes, is it first O?
No, print it.
Is it the last number?
No, throw it away.
Yes, print it.
Set leading zero flag.
Print the number.
Done yet?
No, get next number.
Return to caller.

Use the ROMs to help print decimals
Now that you've seen how to convert hexadecimal numbers to decimal numbers

the hard way, let me show you a much easier way to do it, and it only takes up seven
bytes of memory. You all know that Applesoft is capable of taking a two-byte
hexadecimal number and printing out its decimal equivalent. It's done all the time
when you list an Applesoft program, because the line numbers of a program are
stored as two hex bytes. Now, if we could find some way to use the routines that
Applesoft uses, we could save a lot of time and effort.

It turns out that the task is really quite simple. In the Applesoft ROMs, at
location $ED24, is the start of a routine called LINPRT. What this routine does, is
take the data that are stored in the accumulator and the X-register, and convert
them to decimal and print them. So, if we use the same convention that we have
used in the previous examples, and store the two bytes of the number to be con
verted in LINNUM and LINNUM + 1, all our program has to do is load the most
significant byte into the accumulator and the least significant byte into the X
register. Then all that's left to do is jump to the LINPRT routine.

If you look at line 1230 closely, you will see that the instruction is a JMP and not
a JSR. At this point you might well be asking yourself, what happens after the
numbers are printed out? Where does control return to? To answer the question,
control is returned to the original mode or routine that called the decimal printing
program to begin with. The reason is, that at the end of the LINPRT routine is an
RTS. If our program had a JSR instead of a JMP, LINPRT would have returned
control to our program, where we would simply have executed an RTS to return to
the caller. We can save that extra byte required by the RTS in our program, by
simply letting the RTS in the LINPRT routine return control to the caller.

While this method of printing decimal numbers is the simplest, it's not always
the best because the minute you use the LINPRT routine you are limiting your
program to running only on machines that have Applesoft in ROM or on the
language card. Your program will not run on an Integer machine. Worse than that,

Getting Information Out Of Your Computer I 21

in machines that have both Integer BASIC and Applesoft, if you use this program,
you have to make sure that the Applesoft ROMs have been turned on. So, this
approach to printing decimal numbers can only safely be used on Applesoft only
machines, unless your program specifically turns on the Applesoft ROMs.

0050-
ED24-

1000 *************************************
1010 *** ***
1020 *** OUTPUT A DECIMAL NUMBER # 3 ***
1030 *** ***
1040 *************************************
1050 *
1060 *
1070 * EQUATES
1080 *
1090 LINNUM .EQ $50
1100 LINPRT .EQ $ED24
1110 *
1120 *
1130 * This subroutine is entered with the
1140 * hexadecimal number to be printed in
1150 * LINNUM (low byte) and LINNUM+l (high
1160 *byte). LINPRT is an Applesoft
1170 * routine that converts the data in
1180 * the X-register and the accumulator
1190 * to decimal and prints it.
1200 *

0800- AS 51 1210 LDA LINNUM+l
LDX LINNUM
JMP LINPRT

0802- A6 50 1220
0804- 4C 24 ED 1230

Applying a number printing routine
Now that we have learned several ways to print out a decimal number from a

hexadecimal number, let's see how we can apply what we've learned to a handy
little utility program. It is frequently desirable, useful or necessary to know how
many lines are contained in an Applesoft program. There are several alternatives.
You can print out a listing of the program and count the lines manually, you can
renumber the program starting with one, in increments of one, or you can run this
short APPLESOFT LINE COUNTER program. The easiest by far is the last.

To understand how this program works, you should first know how Applesoft
stores a program line in memory. Let's take a simple line such as the following:

lOPRINT 123

If we were to look directly into memory, we'd see that this line is stored in the
following way:

Address 801 802 803 804 805 806 807 808 809
Contents OA 08 OA 00 BA 31 32 33 00

Looking at locations $801 and $802 we see two numbers $0A and $08 which
comprise the hex number $80A. In 6502 microprocessor systems, numbers are

22 I Chapter 2

always stored in memory with the low-order byte first , followed by the high-order
byte, hence $080A or $80A. This number, represents the location in memory of
the start of the next line in the Applesoft program. So if we were to add another line
to our program, it would start at $80A. Thus, the first two bytes of any Applesoft
program are called the " next line pointer" .

The next two bytes at $803 and $804 hold the hexadecimal equivalent of the line
number. Since our line number is less than 255, only the low-order byte is used (it's
set to $0A which equals 10 in decimal). The high order byte is set to zero. Next, on
the fifth byte ($805) we have the start of our program. You will notice that $805
contains the value $BA, which is a code that represents the word PRINT. In order
to conserve memory space, the programmers who wrote Applesoft decided to take
all the Applesoft keywords and assign each of them a one-byte code. Thus, every
time a word such as PRINT is used, it's only necessary to store the one-byte code
instead of the five letters that make up the word PRINT. By the way, these special
codes are called 'tokens' . For a complete list of tokens and their decimal and
hexadecimal equivalents, see Appendix B.

Following the PRINT token we have the value $31 stored in $806. If we check
our chart of ASCII equivalents (Appendix A) we see that $31 is the hexadecimal
equivalent of the number 1. Similarly $32 and $33 that are in locations $807 and
$808, represent the numbers 2 and 3. Finally we see that location $809 contains a
zero. This zero is what is called an end of line marker. It tells the Applesoft
interpreter that there is no more information on the current line and that it should
get ready for the next line.

Now we have almost all of the information we need to understand this next
program. We just need one more piece of data, "How does the Applesoft inter
preter know when it has reached the end of the program?" The answer is simple. It
follows the end ofline indicator of the last line in the program with two more zeros.
So, in our example above, if line 10 were the only line in our program, locations
$80A and $80B would contain zeros instead of a pointer to the next program line .

Counting Applesoft program lines
The line counting program starts out by clearing the screen, printing out the

program title and copyright notice and prints out the first half of the message that
tells the user how many lines are in the Applesoft program. This program then goes
on to count the number of lines. It starts by storing zeros in the two locations that
are going to hold the line count (lines 1380 to 1400).

A pointer to the start of an Applesoft program is stored in locations $67 and $68.
Generally it is set to $801, but it can change, so we pick it up instead of assuming it
is $801. This is done in lines 1410 and 1420 and this information is stored in
POINTER and POINTER+ 1 (lines 1430 and 1440).

The next part of the program consists of a loop that examines the next line
pointers of each Applesoft line and looks for a next line pointer that is equal to
zero. This is an indication that the end of the program has been reached . In line

Getting Information Out Of Your Computer I 23

1450, the Y-register is set to zero and in line 1460 the contents of the location
pointed to by POINTER plus any offset produced by the Y-register, is loaded into
the accumulator. Since POINTER contains the address of where the next Apple
soft line is stored in memory, the data that is loaded into the accumulator is the
value of the next 'next line pointer'. This information is temporarily stored in
location TEMP and TEMP+ 1 (the program goes through this loop twice for each
new line and increments the offset of the Y-register to 1, hence TEMP+ 1).

After the value of the next line pointer has been retrieved and stored in TEMP
and TEMP+ 1, the value that has been stored in TEMP+ 1, which is still in the
accumulator, is stored in POINTER+ 1 (line 1510) and then temporarily saved in
the X-register (line 1520). Next, the low-order byte of the next line pointer (now in
TEMP) is transferred to POINTER, completing the updating of POINTER for the
next Applesoft line.

Earlier we said that at the end of an Applesoft program, the next line pointer of
the last line points to the two zeros that follow the end ofline marker of the last line.
So, if we test for the presence of the third zero, and it's there, we know that we have
reached the end of the program. That's exactly what we do in line 1550. We
transferred the high-order byte of the next line pointer to the X-register a few
moments earlier. If this is a zero, it would be the third zero and the program would
go to lines 1570 and 1580, where the accumulator and the X-register are set up for a
JSR to the LINPRT routine, which will print out the number oflines counted (line
1590) and the remainder of the text message (lines 1600 to 1620). Finally, the
program executes an RTS which returns control to the caller.

24 I Chapter 2

If it turns out that the end of the program has not been reached, the program
branches to line 1700 where both bytes of the line count are retrieved and 1 is added
to the count with any carry that's generated being added to the high-order byte.
After that, the program jumps back to line 1450 to get the address of the next
program line.

0006-
0008-
0018-
0067 -
02F6-
ED24-
FCS8-
FDED
FFS8-

1000 *************************************
1010 *** ***
1020 *** APPLESOFT LINE COUNTER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
llSO LINECNT
1160 POINTER
1170 TXTPTR
1180 TXTTAB
1190 TEMP
1200 LINPRT
1210 HOME
1220 GOUT
1230 RETURN
1240 *
12SO *
1260
1270 *
1280 *

.EQ $6

.EQ $8

.EQ $18

.EQ $67

.EQ $2F6

.EQ $ED24

.EQ $FCS8

. EQ $FDED

. EQ $FFS8

.OR $2F8

1290 * This is the main program where the
1300 * program title i s printed out and
1310 * the lines of the Applesoft program
1320 * are counted.

SB FC
SB

02F8- 20
02FB- A9
02FD- AO
02FF- 20
0302- A9
0304- BS
0306- BS
0308- AS
030A- A4
030C- BS
030E- 84
0310- AO
0312- Bl
0314- 99
0317~ CB
0318- co 01
031A- FO F6
031C- BS 09
031E- AA
031F- AD F6
0322- BS 08
0324- EO 00
0326- DO OF
0328- AS 07
032A- A6 06
032C- 20 24
032F- A9 BE
0331- AO 03

1330 *
1340
13SO
1360
1370
1380

JSR HOME
LDA #TEXTl
LDY /TEXTl
JSR MSGPRT
LDA #$0

Clear screen.
Point to text
to be printed.
Print it.
Initialize

03
47 03
00
06
07
67
68
08
09
00
08

1390
1400
1410
1420
1430
1440

F6 02

14SO GETADDR
1460 LOOPl
1470
1480
1490
lSOO
lSlO
1S20

02 1S30
1S40
lSSO
1S60
1S70
1S80

ED 1S90
1600
1610

STA LINECNT
STA LINECNT+l
LDA TXTTAB
LDY TXTTAB+l
STA POINTER
STY POINTER+l
LDY #$0
LDA (POINTER), Y
STA TEMP,Y
INY
CPY #$1
BEQ LOOPl
STA POINTER+l
TAX
LDA TEMP
STA POINTER
CPX #$0
BNE ADDCNT
LDA LINECNT+l
LDX LINECNT
JSR LINPRT
LDA #TEXT2
LDY /TEXT2

counter to
zero.
Store program
starting
address in
POINTER.
Get address of
next line &
save it.

Got high byte?
No, go get it.
Save high byte.
Prepare for zero t est.
Get next line
low byte & save it.
Last line?
No, increment count.
Yes, get ready
t o print count
Print it.
Point to text
to be printed .

Getting Information Out Of Your Computer I 25

0333- 20 41 03 1620 JSR MSGPRT Print it .
0336- 60 1630 RTS Return.

1640 *
16SO *
1660 * This subroutine increments the line
1610 * count and then goes back to check for
1680 * another line.
1690 *
1100 ADDCNT CLC Clear carry bit.
1110 LDA LINECNT Get current count low byte.

0331- 18
0338- AS 06
033A- 69 01 1120 ADC #$1 Add 1 to it.
033C- 8S 06 1130 STA LINECNT Save it.

1140 LDA LINECNT+l Get high byte of count.
llSO ADC #$0 Add 0 to add carry.

033E- AS Ol
0340- 69 00
0342- 8S Ol 1160 STA LINECNT+l Save it.
0344- 4C 10 03 lllO JMP GETADDR Get address of next line.

1180 *
1190 *
1800 * This is the message printing routine.
1810 *

0341- 8S 18 1820 MSGPRT STA TXTPTR Set TXTPTR to address of
1830 STY TXTPTR+l text to be printed.
1840 LDY #$0 Zero character counter.

0349- 84 19
034B- AO 00

18SO LOOP2 LDA (TXTPTR),Y Get character. 034D- Bl 18
034F- FO 06 1860 BEQ ENDPRT End if it's zero.
03Sl- 20 ED FD 1810 JSR GOUT Print character.
03S4- C8 1880 INY Increment character counter .
03SS- DO F6 1890 BNE LOOP2 Get next character.
03Sl- 60 1900 ENDPRT RTS Return to sender.

03S8- Cl DO DO
03SB- CC CS D3
03SE- CF C6 D4
0361- AO CC C9
0364- CE CS AO
0361- C3 CF DS
036A- CE D4 CS

1910 *
1920 *
1930 *

036D- D2 1940 TEXTl
036E- 8D 8D 19SO
0310- C2 D9 AO
0313- CA DS CC
0316- CS D3 AO
0319- C8 AE AO
03lC- Cl C9 CC
03lF- C4 CS D2 1960
0382- 8D 1910
0383- C3 CF DO
0386- D9 D2 C9
0389- Cl CB D4
038C- AO A8 C3
038F- A9 AO Bl
0392- B9 B8 B2 1980
039S- 8D 1990
0396- Cl CC CC
0399- AO D2 C9
039C- Cl CB D4
039F- D3 AO D2
03A2- CS D3 CS
03AS- D2 D6 CS
03A8- C4 2000
03A9- 8D 8D 8D
03AC- 8D 2010
03AD- D4 C8 CS
03BO- AO DO D2
03B3- CF Cl D2
03B6- Cl CD AO
03B9- C8 Cl D3
03BC- AO 2020
03BD- 00 2030
03BE- AO CC C9
03Cl- CE CS D3

.AS -"APPLESOFT LINE COUNTER"

.HS 8D8D

.AS -"BY JULES H. GILDER"

.HS 8D

. .AS -"COPYRIGHT (C) 1982"

.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D8D

.AS -"THE PROGRAM HAS "

.HS 00

26 I Chapter 2

03C4- AO C9 CE
03C7- AO C9 04
03CA- AE 2040 TEXT2 .AS -" LINES IN IT. "
03CB- 80 00 2050 .HS 8000

Using the Applesoft line counter
The program has been assembled starting at location $2F8 so that it can be

loaded into an area of memory that is not affected by Applesoft. The program can
be loaded before or after an Applesoft program has been loaded into memory. To
run the program it is simply necessary to type CALL 760.

Once loaded, the program will remain in memory available for use whenever
you need it. There is one exception to this. Since the program starts at $2F8, it uses
the last 8 bytes of the input buffer. This was done because assembling the program
at $300, which is what is normally done, would cause the program to wipe out
some memory locations that are used by DOS.

Very rarely is the entire input buffer filled, so this doesn't usually pose a prob
lem. On top of that, Applesoft limits line lengths to 239 characters, much less than
the 256 character capacity of the buffer. Nevertheless, if for some reason the input
buffer is filled up completely (256 characters are entered before a carriage return is
pressed), part of the program will be wiped out and it will have to be reloaded.
After considerable use however, this problem has never occurred.

Drawing boxes and borders on the screen
Now that we've learned how to print out text and numerical data to the screen,

let's see how we can come up with a way of making our screen look a little more
attractive. One way of doing this is to use a border around the whole screen, or a
box around just a portion of it.

Most programmers don't take the time to develop a border printing routine and
thus when they need to draw one, usually wind up doing it in a very inefficient
manner. The routine presented here is a simple one, and not very long. Neverthe
less, it is quite a versatile routine, and by changing only four parameters you can
completely change the size and shape of the box, as well as the symbol used to
draw it.

The program starts out by clearing the screen in line 1250. If you want to enclose
some text within the box, the routine to do it can be inserted here, or you can
position the cursor to the spot you'll want to start printing at after the box is drawn.
Next, the current position of the cursor is saved (lines 1260 to 1290) so that the
cursor can be restored to its position after the border has been drawn. The routine
that draws the border starts at line 1360 where the cursor is positioned to the top
left-hand corner of the screen (lines 1360 to 1390). Next, the program jumps to line
1580 where it prints out a full line of symbols (the first line of the box) .

To find out how many blank lines there will be inside the box, the program goes

Getting Information Out Of Your Computer I 27

to the location labeled BOXLEN and stores the number found there in the X
register. The blank lines with left and right borders on them are printed next. Lines
1430 to 1450 print the left-hand border of the blank line, while lines 1460 to 1490
print the right-hand border. Line 1490 checks to see if all the blank lines have been
printed and if so, line 1500 finishes printing out the right-hand border of the last
blank line. Then the program falls into the LINSYM routine which prints out the
bottom line of the box. After this last line is printed, the program returns to line
1310, where the program then jumps to a routine that restores the cursor's original
position. This cursor restoring routine starts at line 1690. The program ends on line
1740 where a return from this whole program is executed.

Constants that are used by the program are stored starting at line 1800 where the
the number of blank lines within the box are stored. In line 1810 the location where
symbols on the left side of a blank line stop is stored, while the start of symbols on
the right side of a line are stored in line 1820. Finally, the symbol used to draw the
box is stored in line 1830. Try running this program and varying the constants.
You'll be pleased and surprised at the results.

0018-
0019-
0024-
0025-
FC22-
FC58-
FDED-

0800- 20 58 FC
0803- AS 25
0805- A4 24
0807- 85 18
0809- 84 19
OBOB- 20 11 08
OBOE- 4C 40 08

0811- A9 00
0813- 85 25
0815- 85 24
0817- 20 22 FC
081A- 20 35 08
081D- AE 4C 08
0820- 20 ED FD
0823- A4 24
0825- CC 4D 08

1000 *************************************
1010 *** ***
1020 *** TITLE BOX ***
1030 *** ***
1040 *************************************
1050 *
1060 *
1070 *
1080 *
1090 * EQUATES
1100 *
1110 CV2
1120 CH2
1130 CH
1140 CV
1150 BASCAL
1160 HOME
1170 COUT
1180 *
1190 *
1200 *

.EQ $18

.EQ $19

.EQ $24

.EQ $25

.EQ $FC22

.EQ $FC58

.EQ $FDED

1210 * Clear the screen, and save the
1220 * current location of the cursor for
1230 * later.
1240 *
1250
1260
1270
1280
1290
1300
1310
1320 *
1330 *

JSR HOME
LDA CV
LDY CH

Clear the screen.
Save the current
cursor position.

STA CV2
STY CH2
JSR BOX
JMP POSCUR

Draw the box.
Restore old cursor position.

1340 * Pr.int a box on the screen.
1350 *
1360 BOX
1370
1380
1390
1400
1410
1420 NEXT
1430
1440

LDA #$0
STA CV
STA CH
JSR BASCAL
JSR LINSYM
LDX BOXLEN
JSR COUT
LDY CH
CPY LFTMRG

Place cursor
at the start
of the first
line.
Print a line of
Set box depth
Print left
side of box.
Done?

symbols.

~I

28 I Chapter 2

0828- DO F6
082A- AC 4E 08
082D- 84 24
082F- CA
0830- DO EE
0832- 20 35 08

0835- AD 4F 08
0838- 20 ED FD
083B- A4 24
083D- DO F9
083F- 60

1450
1460
1470
1480
1490
1500
1510 *
1520 *

BNE NEXT
LDY RTMRG
STY CH
DEX
BNE NEXT
JSR LINSYM

No, do more.
Print right
side of box.
End of box?
No, do more.
Yes, finish.

1530 * This subroutine prints out a line of
1540 * symbols. It checks CH to see if
1550 * it has past the 40th column and
1560 * wrapped around to column 0.
1570 *
1580 LINSYM LDA
1590 PRTSYM JSR
1600 LDY
1610 BNE
1620 RTS
1630 *
1640 *

SYMBOL
COUT
CH
PRTSYM

Get the symbol to be used.
Print it.
Get horizontal position.
If not zero, print again.
Return to caller.

1650 * This subroutine restores the cursor
1660 * to its original position before the
1670 * box was drawn.
1680 *

0840- AS
0842- A4
0844- 85
0846- 84
0848- 20
084B- 60

19 1690 POSCUR LDA CH2
CV2
CH
CV

Get original cursor
position.

084C- 15
084D- 01
084E- 27
084F- AA

18 1700 LDY
24 1710 STA
25 1720 STY
22 FC 1730 JSR

1740 RTS
1750 *
1760 *

BAS CAL

Save in proper locations.

Send cursor there.
Return to caller.

1770 * These are constants that are used by
1780 r the program.
1790 *
1800 BOXLEN .HS 15
1810 LFTMRG .HS 01
1820 RTMRG .HS 27
1830 SYMBOL .HS AA

Number of lines in box.
End of symbols on left side.
Start of symbols on right side .
Character used to draw border.

Chapter3

GEl'l'ING INFORMATION IN10
YOUR COMPUTER

You can write a lot of useful assembly language programs that only use the
computer's output capabilities, but sooner or later, you're going to want to be able
to input data while your program is running. Getting information into your Apple
is not difficult at all as you can tell by looking at the fairly short program listing for
the Simple Read Keyboard Routine .

One of the things that makes it easy to input data is the configuration of hardware
in the Apple computer. Apple's designer's arranged things so that the keyboard
looked like a particular memory location. So, by looking at the right place in
memory, we can see if a key has been pressed and determine exactly which key it
was.

As it turns out, if you look at location $COOO you can see if a key has been
pressed. As long as no key is pressed , any value that is retrieved from location
$COOO will be less than 128. When a key is pressed, $80 is added to the ASCII value

29

30 I Chapter 3

of the key pressed and that value remains in location $COOO until a command to
clear that location is given or another key is pressed.

In our program, the memory location associated with the keyboard is read in line
1180 and in line 1190 a test is made to see if a key was pressed by checking bit 7 of
the byte retrieved from $COOO. If bit 7 is zero, the keyboard is read again until it has
changed to l. Once we've loaded the accumulator with the character input from the
keyboard, we should clear this memory location, otherwise the next time we check
to see if a key has been pressed, we'll get an indication that it has, even if it hasn't,
and get the last character that was entered. In order to clear this memory location,
it is only necessary to zero out bit seven of the data stored in $COOO, since this will
make any value stored there less than 128.

The Apple hardware has been arranged in a special way so that it is possible to
turn off bit 7 by simply accessing another memory location: $C010. If this location
is accessed in any way with an LDA, STA or BIT instruction, bit 7 in $COOO will be
converted from a 1 to a 0. Location $C010 is called by a special name, Keyboard
Strobe, and in our program, it is activated in line 1200 with a BIT instruction . We
could just as easily have used an LDA instruction to achieve the same results. Some
programmers use an STA instruction to clear bit 7, and while this will work, it can
be a problem on those Apples that have been modified to include a keyboard buffer.
The reason for this is that the STA instruction actually references the location it's
storing data to twice. So, with a keyboard buffer and an STA instruction clearing
the keyboard strobe twice for every character read, you'll wind up losing every
other character. For best results use the LDA or BIT instructions.

After we clear bit 7 of $COOO, our program prints out the character to the screen
so we can see what letter we pressed (line 1210) and it then jumps back to get
another character.

COOO
C010-
FDED-

0800- AD 00 CO
0803- 10 FB
0805- 2C 10 CO
0808- 20 ED FD
080B- 4C 00 08

1000 *************************************
1010 *** ***
1020 *** SIMPLE READ KEYBOARD ROUTINE ***
1030 *** ***
1040 *************************************
1050 *
1060 *
1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
1120 KEYBRD .EQ $COOO
1130 KBDSTRB .EQ $C010
1140 GOUT .EQ $FDED
1150 *
1160 *
1170 *
1180 GETKEY
1190
1200
1210
1220

LDA KEYBRD Read keyboard
BPL GETKEY If no key pressed, read again.
BIT KBDSTRB Key pressed, clear strobe.
JSR GOUT Echo character to screen.
JMP GETKEY Get next character.

This program works fine for very short keyboard entries, but becomes inconven
ient to use for long entries. To begin with, this program doesn't print any prompt

F

Getting Information Into Your Computer I 31

character, so you don't know where the text entry on the screen is required. In
addition, the program doesn't allow for any way of terminating text input except by
pressing RESET.

A better way to read the keyboard
The problems encountered with the previous program can be eliminated by

taking advantage of one of the monitor ROM routines and making a small change
in the program. Instead of having our program look at the keyboard directly, we
can use the RDKEY routine (line 1170) in the ROM, at location $FDOC, to do that
job for us. This routine puts a flashing cursor on the screen at the location where an
input is expected, reads the keyboard location ($COOO) and clears the strobe
($C010) .

To allow us to terminate the input of data we can designate a special character as
the terminator and test for its presence. In this case, the ESCape character ($9B) is
used. Line 1180 checks to see if an ESCape has been entered. If it has, the program
returns to the calling mode or program, if not, the character is printed out and a
new character is fetched.

1000 *************************************
1010 *** ***
1020 *** IMPROVED ***
1030 *** READ KEYBOARD ROUTINE ***
1040 *** ***
1050 *************************************
1060 *

FDOC
FDED-

1070 *
1080 *
1090 *
1100 * EQUATES
1110 *
1120 RDKEY .EQ $FDOC
1130 COUT . EQ $FDED
1140 *
1150 *
1160 *

0800- 20 OC FD 1170 GETKEY JSR RDKEY
0803- C9 9B 1180 CMP #$9B
0805- FO 06 1190 BEQ QUIT
0807- 20 ED FD 1200 JSR COUT
080A- 4C 00 08 1210 JMP GETKEY
080D- 60 1220 QUIT RTS

Read the keyboard .
Was key pressed ESC?
Yes, quit program.
No, print key pressed.
Get the next key.
Return to caller.

Both of the previous routines input text one character at a time and neither allows
you to make corrections on inputted data. The reason you can't make corrections is
that the text being entered is not stored in any buffer before it is processed. If it
were, then if an error were caught it could be corrected while it was still in the
buffer and before it was processed.

Entering text a line at a time

By taking advantage of another routine in the monitor ROM (GETLN which is
located at $FD6A) we can input text into the input buffer on page 2 of memory

~I

32 I Chapter 3

($200 to $2FF) and use all of the Apple's normal editing capabilities. As long as
you don't press the RETURN key, it is possible to backspace and change any
character and then copy over the rest of the line.

This type of program comes in particularly handy when you want the user to
enter some text that is going to be printed out again later under program control.
The reason is, it stores the entered text in memory the same way text that is used
with the MSGPRT routine is stored. That is, it's stored with the high bit set and is
terminated by a zero. One place where you'll find this routine a must is when you
ask the user for the name of a fi'le to be loaded or saved to. After the user inputs that
name, it must be stored for later use.

The GETLN routine at $FD6A prints out the prompt that is currently stored in
$33 before it waits for the user's input. More often than not, you'll want to ask for
the user's input without using this prompt, as is the case here. To do this, another
entry point into this routine, which I call GETLNl and is located at $FD6F, is used
(line 1180). Upon returning from GETLNl, the corrected text that the user entered
is stored in the input buffer. It must be moved from there immediately (lines 1200 to
1240) because it could get wiped out by the next data that are entered. The end of
the data in the input buffer is indicated by a carriage return ($8D). Since we want
our text to be terminated by a zero and not a carriage return, the carriage return is
replaced by a zero and stored at the end of the text in the user designated buffer
(lines 1250 to 1260).

1000 *************************************
1010 *** ***
1020 *** TEXT INPUT ROUTINE ***
1030 *** ***
1040 *************************************
1050 *
1060 *
1070 *
1080 *
1090 * EQUATES
1100 * -
1110 IN
1120 BUFFER
1130 GETLNl
1140 COUT
1150 *

0200-
0300-
FD6F
FDED-

1160 *
1170 *

0800- 20 6F FD 1180
0803- AO FF 1190
0805- C8 1200 LOOP
0806- B9 00 02 1210
0809- 99 00 03 1220
080C- C9 8D 1230
OBOE- DO F5 1240
0810- A9 00 1250
0812- 99 00 03 1260
0815- 60 1270

.EQ $200

.EQ $300

.EQ $FD6F

.EQ $FDED

JSR GETLNl
LDY #$FF
!NY
LDA IN,Y
STA BUFFER,Y
CMP #$8D
BNE LOOP
LDA #$0
STA BUFFER,Y
RTS

Entering as much text as you want

Get a line of text, no prompt.
Initialize character
counter to zero.
Get a character
and store it in buffer.
Is it a carriage return?
No, get next character.
Yes, make it a zero
to indicate end of text.
Return to caller.

You will find the TEXT INPUT ROUTINE a useful program to use when it is
necessary to enter a line of text. It does have the limitation, however, that you

Getting Information Into Your Computer I 33

cannot enter more than 256 characters with it. The reason is that the Y-register is
used as the pointer from a base address to where the next character is to be stored.

If you want to be able to store unlimited amounts of text into memory (up to the
capacity of your computer that is) then the IMPROVED TEXT INPUT ROUTINE
is just what the doctor ordered. This program uses a 2 byte pointer on page zero
called BUFPTR to indicate the location of the next character to be stored.

The IMPROVED TEXT INPUT ROUTINE is fairly similar the previous pro
gram, with a few exceptions. It takes text out of the input buffer every time the
carriage return is pressed and stores everything, including the carriage return, in
the user defined buffer. Then the program goes back and gets another line of text.
This continues until the program encounters a Control-Q (line 1520), at which
point it replaces the Control-Q with a zero and exits to the last active BASIC.

Because this program uses the input buffer to enter text, a maximum of 255
characters can be entered before a carriage return must be pressed. Chances of
having a single line that is greater than 255 characters are small, so this should not
pose any problem. If you will want to print this text out again, it will be necessary
to use one of the long message printing routines that were discussed in the last
chapter. And in fact, if you combine this program, with one of those, you have two
major parts of a rudimentary text editor. By doing a little additional work to
develop an in-memory byte editor, it's possible to write a simple text editor.

You should notice that this program uses the IMPROVED MESSAGE
PRINTER that was discussed in the last chapter. Since this routine is only being
used to print out a few short messages, its limitation to 256 characters is not a
problem. Wherever possible throughout this book, you will find that previously
developed programs are used as subroutines.

0006-
0008-
0200-
03DO-
9000-
EOOO
FC58-
FDOC
FD6F
FDED-

1000 *************************************
1010 *** ***
1020 *** IMPROVED TEXT INPUT ROUTINE ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
1150 BUFPTR
1160 TXTPTR
1170 IN
1180 WARMDOS
1190 BUFFER
1200 BASIC
1210 HOME
1220 RDKEY
1230 GETLN1
1240 COUT
1250 *
1260 *

.EQ $6

. EQ $8

.EQ $200

.EQ $3DO

.EQ $9000

.EQ $EOOO

.EQ $FC58

. EQ $FDOC

.EQ $FD6F

. EQ $FDED

1270 * Print out the title and copyright
1280 * notice and wait for the user to press
1290 * any key.

34 I Chapter 3

Getting Information Into Your Computer I 35

OS97- B9 BS B2 1S60 .AS -"COPYRIGHT (C) 19S2"
OS9A- SD 1S70 .HS SD
OS9B- Cl CC CC
OS9E- AO D2 C9
OSAl- C7 CS D4
OSA4- D3 AO D2
OSA7- CS D3 CS
OSM- D2 D6 CS
OSAD- C4 lSSO .AS -"ALL RIGHTS RESERVED"
OSAE- SD SD SD
OSBl- SD 1S90 .HS SDSDSDSD
OSB2- DO D2 CS
OSBS- D3 D3 AO
OSBS- Cl CE D9
OSBB- AO CB CS
OSBE- D9 AO D4
OSCl- CF AO C3
OSC4- CF CE D4
OSC7- C9 CE DS
OSCA- CS 1900 .AS -"PRESS ANY KEY TO CONTINUE"
OSCB- 00 1910 .HS 00

Entering decimal numbers
In the last chapter we saw how it was possible to take hexadecimal numbers and

convert them so that they printed out as decimal numbers. Now we're going to do
the reverse. We're going to enter decimal numbers (whole integers only) and
convert them into hexadecimal numbers that can be used by our program. It is not
necessary to use this approach if all you're going to do is enter a single digit, such
as a number for a menu selection, because it's easier to check for the number as an
ASCII character. But for entering numbers that are going to be used in calcula
tions, you'll need this program.

The program starts our by getting a line of text from the user (line 1330). This
line should contain only the decimal digits of the number we want to convert and
the number should not contain more than five digits, which is the maximum
number of digits that can be represented by two bytes.

The program has some simple error checking built into it . The first thing it does
is check to see if a number was entered or the RETURN key was just pressed. If the
return key was pressed, the length of the text entered, which is stored in the X
register in the GETLNl routine, is zero. Since the input of this routine must be at
least 1 digit, this generates an error (lines 1340 and 1350). Next is the check for a
number that has more than 5 digits and its appropriate error message (lines 1360
and 1370). By the way, the error routine, which begins at line 1970, uses one of the
routines in the Apple ROM. This routine, PRERR which is at $FF2D, rings the
bell and prints out the message ERR. After an error is detected and the user is
informed, he is given an opportunity to start over again (line 1990).

Getting back to our main program, the length of the digit entered is stored in a
location called LENGTH (line 1380), for use later on when we want to see if we've
processed all digits of the number. Next the two locations that will be used to hold
the converted number - LINNUM and LINNUM + 1 - are initialized to zero and
one last check is made to make sure that only numbers and no letters or symbols

36 I Chapter 3

were entered (lines 1420 to 1470). An error message is generated if anything other
than numerals were entered.

Data that are entered via the GETLNl routine consist of the ASCII code for the
character to which $80 has been added. This means that the digits 0 through 9 will
appear as $BO through $B9. If somehow we were able to make the left nibble of the
byte equal to zero, we'd have the decimal equivalent of all of the digits in the
number. That's exactly what we do in line 1480. This conversion is done within a
loop that retrieves one digit at a time and stores it temporarily on the stack (line
1490). Next, the current contents ofLINNUM and LINNUM + 1 are multiplied by
ten by a routine starting in line 1550 so the digits can be added to each other to build
the number (e.g. 1 x 10 + 2 = 12).

The multiplication by ten is accomplished by multiplying by two (lines 1550 and
1560), saving the the results (lines 1580 to 1600) and then multiplying again by
four, to get a total multiplication of 8 (lines 1610 to 1640). Then the 8 and 2
multiples are added together to get the final multiple of 10 (lines 1650 to 1700) .
Finally, the digit that was stored on the stack is retrieved and added to the contents
of LINNUM (lines 1710 to 1730). If a carry is generated, it is added to LIN
NUM + 1 (lines 1740 to 1760). This whole process is carried out until all of the
digits of the number that was entered have been processed. When done, the hex
adecimal equivalent of the number entered can be found in LINNUM and LIN
NUM + 1.

If you want to limit your programs to operating on a computer with Applesoft in
ROM, then you can use INPUT INTEGER ROUTINE NO. 2 to enter data. This
program was originally written by Peter Meyer and was published in S-C Soft-

0006-
00 SO-
0200-
FD6F
FD8E
FF2D-

0800- 20 6F
0803- EO 00
080S- FO 49
0807- EO 06
0809- BO 4S
080B- 86 06
080D- A9 00
080F- 8S SO
0811- 8S Sl
0813- AO 00
081S- B9 00
0818- C9 BO
081A- 90 34
081C- C9 BA
081E- BO 30
0820- 29 OF
0822- 48

0823- 06 so
082S- 26 Sl
0827- AS Sl
0829- 48
082A- AS SO
082C- 48
082D- 06 SO
082F- 26 Sl
0831- 06 so
0833- 26 Sl
083S- 68
0836- 6S so
0838- 8S so
083A- 68
083B- 6S Sl
083D- 8S Sl
083F- 68
0840- 6S so

Getting Information Into Your Computer I 37

1000 *************************************
1010 *** ***
1020 *** INPUT INTEGER ROUTINE NO. 1 ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
1140 LENGTH
llSO LINNUM
1160 IN
1170 GETLNl
1180 CROUT
1190 PRERR
1200 *
1210 *

.EQ $6

.EQ $SO

. EQ $200

.EQ $FD6F

.EQ $FD8E

.EQ $FF2D

1220 * This section of code handles entry
1230 * of the number from the keyboard and
1240 * then checks each digit to see that it
12SO * is valid. If a valid digit is found
1260 * the 4 most significant bits (MSBs)
1270 * are set to zero to get just the digit
1280 *by itself. It also checks to see if
1290 * more than S digits have been entered .
1300 * If an error is detected an error
1310 * message is generated.
1320 *

FD 1330 START
1340
13SO
1360
1370
1380
1390
1400
1410
1420

02 1430 LOOP
1440
14SO
1460
1470
1480
1490
lSOO *
lSlO *

JSR GETLNl
CPX #$0
BEQ ERROR
CPX #$6
BCS ERROR
STX LENGTH
LDA #$0
STA LINNUM
STA LINNUM+l
LDY #$0
LDA IN,Y
CMP #$BO
BCC ERROR
CMP #$BA
BCS ERROR
AND #$OF
PHA

Get a number
Any entry?
No, do over.
Is >S digits?
Yes, do over.
Save number of
Initialize
hex number to
zero.

digits.

Get a character .
Test to see if
it is a digit
from 0 to 9.

Mask out 4 MSBs.
Save digit

1S20 * This section of code multiplies a
1S30 * 16-bit number stored in LINNUM by 10.
1S40 *
lSSO MULT
1S60
1S70
1S80
1S90
1600
1610
1620
1630
1640
16SO
1660
1670
1680
1690
1700
1710
1720

ASL LINNUM
ROL LINNUM+l
LDA LINNUM+l
PHA
LDA LINNUM
PHA
ASL
ROL
ASL
ROL
PLA

LINNUM
LINNUM+l
LINNUM
LINNUM+l

ADC LINNUM
STA LINNUM
PLA
ADC LINNUM+l
STA LINNUM+l
PLA
ADC LINNUM

Multiply by 2

Save number
multiplied by
2 for latter.

Multiply by 4
to get a total
multiplication
of 8.
Add the 2 & 8
multipl es to
get a total
multiplication
of 10.

Get current
digit & add it

38 I Chapter 3

0842- 85 50
0844- A9 00
0846- 65 51
0848- 85 51

084A- C8
084B- C4 06
084D- DO C6
084F- 60

0850- 20 2D FF
0853- 20 8E FD
0856- 4C 00 08

1730
1740
1750
1760
1770 *
1780 *

STA LINNUM
LDA #$0
ADC LINNUM+l
STA LINNUM+l

to the partial
sum.

1790 * This section checks to see if all of
1800 * the digits have been processed and if
1810 * not gets another digit until there
1820 * are no more.
1830 *
1840
1850
1860
1870
1880 *
1890 *

INY
CPY LENGTH
BNE LOOP
RTS

Finished?
No, get more.
Yes, no more.

1900 * This subroutine rings the bell and
1910 * prints out the message ERR followed
1920 * by a carriage return. Control is
1930 * then passed back to the beginning of
1940 * the program so that a valid number
1950 * can be entered.
1960 *
1970 ERROR JSR PRERR
1980 JSR CROUT
1990 JMP START

Error message
Output a carriage return.
Start over.

ware's Apple Assembly Line. The program makes extensive use of internal Apple
soft routines and will give us an opportunity to see how things are done inside
Applesoft. One thing should be pointed out here, and that is that using ROM
routines doesn't always save you a lot of memory over writing dedicated routines.
If you take a look at the length of this program and at the length of the previous
program, you'll see that this one is only 13 bytes shorter than the former.

The first thing that the program does is to input a line of text into the keyboard
buffer (lines 1330 and 1340). Once a carriage return has been pressed, the program
then checks to see if at least one character was entered. If not, the program jumps to
an error routine that sets the carry bit. If a return from this routine has the carry bit
clear, the calling program will know that no errors took place. If no error is
generated, the program goes on to temporarily save the length of the number
entered on the stack while it does a subroutine jump do an Applesoft ROM routine
called GDBUFFS.

The GDBUFFS routine, which is located at $D539, puts a zero at the end of the
input buffer. It then proceeds to mask off (or zero out) the most significant bit (bit 7)
on all bytes in the input buffer. This is equivalent to subtracting $80 from all bytes.
The result is that all of the data in the input buffer are in their true ASCII form.
Upon returning from GDBUFFS, the length of the number is retrieved from the
stack (line 1450) and a check is made to see if more than five digits were entered
(line 1460). If so an error is generated and the carry is set. If not, the length is
transferred to the X-register, where it is used as an index into the input buffer (lines
1480 to 1500).

OOS0-
009D
OOAO
OOAl
OOA2-
00B 7-
OOBS-
0200-
DS39-
EBF2-
EC4A
FD 7 S-

0800- A2 00
0802- 20 75 FD
0805- 8A
0806- FO 27

0808- 48
0809- 20 39 DS
080C- 68
080D- C9 06
080F- BO lE
0811- AA
0812- CA
0813- BD 00 02
0816- C9 41
0818- BO 15
081A- CA
081B- 10 F6

081D- A9 00
081F- AO 02
0821- 85 BB
0823- 84 B9
0825- 20 B7 00
0828- 20 4A EC

082B- AS A2

Getting Information Into Your Computer I 39

1000 *************************************
1010 *** ***
1020 *** INPUT INTEGER ROUTINE NO. 2 ***
1030 *** ***
1040 *** BY PETER MEYER ***
1050 *** FROM APPLE ASSEMBLY LINES ***
1060 *** PUBLISHED BY S-C SOFTWARE ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
1150 LINNUM
1160 FACEXP
1170 FACMO
1180 FACLO
1190 FACSGN
1200 CHRGOT
1210 TXTPTR
1220 IN
1230 GDBUFFS
1240 QINT
1250 FIN
1260 NXTCHR
1270 *
1280 *

.EQ $50

.EQ $9D

.EQ $AO

.EQ $Al

.EQ $A2

.EQ $B7

.EQ $B8

. EQ $200

.EQ $DS39

.EQ $EBF2

.EQ $EC4A

.EQ $FD75

1290 * This section gets a character from
1300 * the keyboard and stores it in the
1310 *input buffer ($200 to $2FF).
1320 *
1330
1340
1350
1360
1370 *
1380 *

LDX #$0
JSR NXTCHR
TXA
BEQ ERROR

Get character, put in buffer.
Check for null entry.
Null, set carry.

1390 * This checks for alpha input and also
1400 * eliminates entries that would cause
1410 * an overflow condition.
1420 *
1430
1440
1450
1460
1470
1480
1490
1500 LOOP
1510
1520
1530
1540
1550 *
1560 *

PHA
JSR GDBUFFS
PLA
CMP #$06
BCS ERROR
TAX
DEX
LDA
CMP
BCS
DEX

IN,X
#'A
ERROR

BPL LOOP

Save length.
Put 0 at end of input buffer.
Retrieve length.
More than S digits entered?
Yes, set carry .
No, use length as index.

Get character from buffer .
Is it alpha?
Yes, set carry.
No, decrement char. count.
Get next character.

1570 * Get the number from the input buffer
1580 * and load it into the floating point
1590 * accumulator.
1600 *
1610
1620
1630
1640
1650
1660
1670 *
1680 *

LDA #IN
LDY /IN
STA TXTPTR
STY TXTPTR+l
JSR CHRGOT
JSR FIN

Get address of
input buffer
and save it in a
zero page pointer.
Get number from buffer.
Put it in floating pt. acc.

1690 * Check to see if the number is
1700 * negative. If it is set the carry bit
1710 *
1720 LDA FACSGN See if number is negative.

40 I Chapter 3

082D- 10 02
082F- 38
0830- 60

0831- AS 9D
0833- C9 91
083S- BO OC

0837- 20 F2
083A- AS Al
083C- A4 AO
083E- 8S SO
0840- 84 Sl
0842- 18
0843- 60

1730 BPL CHKSIZE No, check size of number ~
1740 ERROR SEC Yes, error.
17SO RTS
1760 *
1770 *
1780 * Check to see if the number is too big
1790 *
1800 CHKSIZE LDA FACEXP
1810 CMP #$91
1820 BCS END Too large.
1830 *
1840 *
18SO * Convert the number, which is now in
1860 * the floating point accumulator into
1870 * an integer and store it in LINNUM.
1880 *

EB 1890
1900
1910
1920
1930
1940
19SO END

JSR QINT
LDA FACLO
LDY FACMO
STA LINNUM
STY LINNUM+l
CLC
RTS

Integer conversion.
Transfer number to LINNUM.

Value is ok.

In the loop starting at line 1500, each of the characters that was entered is
checked to see if it is an alpha character. If it is, an error is generated, otherwise the
program falls into a routine that takes the number from the input buffer and puts it
into the floating point accumulator (line 1610). To do this Applesoft's CHRGOT
routine at $B7 on page zero is used. Before jumping to this routine however, it is
necessary to set a text pointer that this routine uses to point to the first digit of the
number. This is done in lines 1610 to 1640 and CHRGOT is jumped to in line 1650.
Finally, a jump is made to another Applesoft routine called FIN, which is located at
$EC4A. This routine takes the number retrieved by the CHRGOT routine and
converts it to floating point format and places it in the floating point accumulator
(line 1660).

Once the number is in the floating point accumulator, two more tests are per
formed on it, one to check for a negative number (lines 1720 to 1730) and one to
check for too large a number (maximum size number is 65535). Finally, if the
number entered passes all of these tests, it is converted into an integer number (line
1890) by still another Applesoft routine: QINT which is located at $EBF2. QINT
stores the converted number, as a hexadecimal number in two locations of the
floating point accumulator: FACLO and FACMO. From there, the number is taken
and stored in LINNUM and LINNUM + 1 (lines 1900 to 1930), the carry bit is
cleared indicating no errors were encountered.

While this program was assembled to operate at $800, it can be loaded as is into
any memory range and work properly. This is because there are no absolute jumps
to any routines within the program. All jumps are relative branches (e.g. move
down 30 locations as opposed to move to location $81E). Thus the program is
completely relocatable.

Hexadecimal nwnbers can be entered too

While most of the number entry your programs will do will probably deal with
decimal numbers, occasionally it will be necessary to allow the user to enter

Getting Information Into Your Computer I 41

hexadecimal numbers as well. The general technique used is similar to the one that
we used for entering decimal numbers in the program INPUT INTEGER ROU
TINE NO. 1. First a line of text is requested from the user and then it is checked for
the proper number of digits. In the case of hexadecimal numbers, we only wish to
permit 4 digits, instead of the 5 allowed for decimal. This change is reflected in line
1350.

After the data have been entered, a check is made to see ifthe characters entered
are numbers in the 0 to 9 range, just as was done in the integer program. Next,
however, a check is also made to see if any of the non-digits are letters of the
alphabet from A to F (lines 14 70 to 1490), which are legal hex digits. Once all of the
checking is done, the program goes about converting the legal alpha characters A
to F to the numerical range of $BA to $BF. This is done by subtracting 6 from the
current alpha value (line 1620).

At this point, all of the hexadecimal digits that have been entered have the proper
hex digit in the right-most (least significant) nibble and a $Bin the left-most (most
significant) nibble. Ifwe can get rid of the $Band combine the four least significant
nibbles in the proper order, we can produce the hex number we require. This is

I
.L

42 I Chapter 3

what is done in lines 1630 to 1720. From 1630 to 1660, the low-order nibble is
shifted left four times so that it becomes the high order nibble. The $B that was
there previously is thus eliminated.

Now that we have the first digit of our hexadecimal number as the high-order
nibble of the accumulator, all we have to do is shift it into LINNUM and from there
into LINNUM + 1. This is done by the code in lines 1670 to 1720. Now, if this
whole process is repeated for each digit of the hex number, starting with the most
significant digit (as we have here), the answer will appear in locations LINNUM
and LINNUM + 1. As each digit is added, it gets shifted from the low-order byte of
LINNUM to the high-order byte of LINNUM and then to the low-order byte of
LINNUM + 1 and finally to the high-order byte of LINNUM + 1.

Throughout the last two chapters we have looked at a variety of ways of getting
information into and out of the computer. We've even learned how to draw borders
on the screen. Now, let's put a few of the things we've learned together to produce a
program subroutine that all assembly language programmers have had to write at
one time or another. We'll write a selection menu program that will print out a title
and several selection choices, allow the user to pick a choice and then jump to the
appropriate routine. The task of allowing the user to select one option from a list of

0006-
0050-
0200-
FD6F -
FD8E
FF2D-

0800- 20
0803- EO
0805- FO
0807- EO
0809- BO
080B- 86
080D- A9
080F- 85
0811- 85

6F FD
00
37
05
33
06
00
50
51

1000 *************************************
1010 *** ***
1020 *** INPUT A HEX NUMBER ROUTINE ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 ***· JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 * ' EQUATES
1120 *
1130 LENGTH
1140 LINNUM
1150 IN
1160 GETLNl
1170 CROUT
1180 PRERR
1190 *
1200 *
1210 *
1220 *

.EQ $6

.EQ $50

.EQ $200

.EQ $FD6F

.EQ $FD8E

.EQ $FF2D

1230 * This section of code handles entry
1240 * of the number from the keyboard and
1250 * then checks each digit to see that it
1260 * is valid. It also checks to see if
1270 * more than 4 digits have been entered.
1280 * If an error is detected an error
1290 * message is generated.
1300 *
1310 *
1320 START
1330
1340
1350
1360
1370
1380
1390
1400

JSR GETLNl
CPX #$0
BEQ ERROR
CPX #$5
BCS ERROR
STX LENGTH
LDA #$0
STA LINNUM
STA LINNUM+l

Get a number
Any entry?
No, do over.
Is it >4 digits?
Yes, do over.
Save number of digit s .
Initialize
hex number to
zero.

0813- AO 00
0815- B9 00 02
0818- C9 BO
081A- 90 22
081C- C9 BA
081E- 90 OA
0820- C9 Cl
0822- 90 lA
0824- C9 C7
0826- BO 16

0828- E9 06
082A- OA
082B- OA
082C- OA
082D- OA
082E- A2 04
0830- OA
0831- 26 50
0833- 26 51
0835- CA
0836- DO F8

0838- C8
0839- C4 06
083B- DO D8
083D- 60

083E- 20 2D FF
0841- 20 8E FD
0844- 4C 00 08

Getting Information Into Your Computer I 43

1410
1420 LOOP
1430
1440
1450
1460
1470
1480
1490
1500
1510 *
1520 *

LDY #$0
LDA IN,Y
CMP #$BO
BCC ERROR
CMP #$BA
BCC OKAY
CMP #$Cl
BCC ERROR
CMP #$C7
BCS ERROR

Get a character.
Test to see if
it is a digit
from 0 to 9
or A through F

1530 * This section of code converts the
1540 * letters A through F to the
1550 * hexadecimal values $BA through $BF
1560 * by subtracting 6 from the value of
1570 * the l e tter. The low order nibble of
1580 * the accumulator is moved into the
1590 * high order nibble and the accumulator
1600 * is shifted into LINNUM and LINNUM+l.
1610 *
1620
1630 OKAY
1640
1650
1660
1670
1680 SHIFT
1690
1700
1710

*
*

SBC #$6
ASL
ASL
ASL
ASL
LDX #$4
ASL
ROL LINNUM
ROL LINNUM+l
DEX
BNE SHIFT

Convert A-F
Shift lo order
nibble to hi
order nibble.

Shift
accumulator
into LINNUM
and LINNUM+l

1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820

* This section checks to see if all of
* the digits have been processed and if
* not gets another digit until there
* are no more.

* CHKDONE INY

1830
1840 *
1850 *

CPY LENGTH
BNE LOOP
RTS

Finished?
No, get more.
Ye s , no more.

1860 * This subroutine rings the bell and
1870 * prints out the message ERR followed
1880 * by a carriage return. Con trol i s
1890 * then passed back to the beginning of
1900 * the program so that a valid number
1910 * can be entered.
1920 *
1930 ERROR
1940
1950

JSR PRERR
JSR CROUT
JMP START

Error message.
Output a carriage return.
Start over .

many and then jumping to the appropriate routine is not difficult. But frequently it
is done in an inefficient manner. Here is a general purpose routine that I'm sure
you'll find very useful.

Use a library to make progranuning easier
The SAMPLE MENU PROGRAM uses all or part of three programs that we

have already discussed: LONG MESSAGE PRINTER NO. 2, TITLE BOX and the
IMPROVED READ KEYBOARD ROUTINE. In fact, if you examine the pro
gram carefully, you'll see that only about 30% of it is new, the remainder is just

44 I Chapter 3

routines that we have already discussed. This situation illustrates a very important
concept, that the best way to program is to use routines from a library of programs
that you have already developed.

It also illustrates another important concept, that the programming task should
be broken down into individual modules and programmed one module at a time.
This makes the programming task more manageable and also makes troubleshoot
ing a program a lot easier. Remember, programs don't always work the first time
out.

How to write a menu program
Getting back to our menu program, after clearing the screen, our program

jumps immediately to the message printing subroutine. This routine is different
than the ones we've used recently. It is the in-line message printing routine that we
examined in the last chapter. One advantage of this subroutine, is that it is a little
easier to follow the flow of the program because the messages that are printed out
are integrated into the program at exactly the spot they are needed. There are two
distinct disadvantages to this approach however. One is that if you are trying to
trace the operation of a program with an in-line printing routine and you don't have
an original source code listing, it is very difficult to do. The second is that if you
ever decide to do foreign language translations of your program, it is a lot easier to
do ifall of the text is grouped in one specific place.

The program prints out the title, the menu of choices and the prompting message
asking for the user's choice. The next thing it does, is it stores the current position
of the cursor (lines 1610 to 1640), which is one space after the colon on the line
'ENTER CHOICE: ' and then goes back and draws the box around the title (line
1650). After drawing the box, the program them restores the cursor to its former
position right after the choice prompt. It then reads the keyboard (line 2230)
looking for any number in the range of 1 to 7. If anything other than a number
within this range is pressed, the entry is ignored.

If a number in the 1 to 7 range is selected, the number is converted from ASCII
with the high bit set, to hexadecimal and 1 is subtracted from the number to put it in
the 0 to 6 range (line 2380). Next, this number is going to be converted into an
index into a table of addresses that will be used to retrieve the address of the
subroutine that is desired. Since the addresses in the table all require two bytes, the
number that we got from line 2380 must be doubled (line 2390). Thus, if we
selected item 1, line 2380 resulted in the number 0, this is doubled and we still have
zero, so the address information we want starts at the beginning of the table with no
offset. If we had selected item number 4, that number would be converted to 3
which would be doubled to 6. This means that the address we want starts at the 7th
byte from the beginning of the table. If each address takes ofup two bytes and there
are 3 choices before this one, six bytes have already been used. So it's easy to see
why the information we want is at the 7th byte. The byte we retrieved with the offset
of six (line 2410), was the seventh byte because we started counting from zero.

Getting Information Into Your Computer I 45

Using the stack to jump to a subroutine
Once we have the correct index into the jump table, the address of the routine we

want to jump to is loaded into the accumulator and then pushed onto the stack (lines
2410 to 2450), HIGH BYTE FIRST! I emphasize this, because all other two-byte
operations with the 6502 deal with the low byte first. We push the address on the
stack in this manner, because the stack has a LIFO (Last In, First Out) structure.
That means that when the address is pulled off the stack to jump to the appropriate
subroutine, it will be pulled off in the conventional manner, low byte first.

If you take a careful look at the table of jump addresses that begins at line 2860,
you'll notice two things. The first is that the addresses have been stored in the table
high-byte first. This makes it easier for the programmer to read when he's looking
at the source listing and also makes it easier to push the address on the stack in the
proper order. More important than that, if you look at the addresses in the table and
the actual address of the start of the various routines, you'll find that the address in
the table is always one less than the real address. The reason for this is simple. By
pushing the address on the stack, we've fooled the 6502 processor into thinking
that the program executed a JSR instruction. So, when an RTS instruction is
executed (line 2460), the 6502 pulls the first two bytes off the top of the stack, low
byte first, it increments the low-byte by one, and then jumps to the address, thinking
it is returning from a subroutine call to execute the next available instruction. This
method of implementing an absolute jump to another part of the program, based on
addresses retrieved from a table is a fairly efficient way of doing things.

That's the meat of the program. The only thing left to go over is the code from

46 I Chapter 3

lines 2570 to 2770. This code simple implements a demonstration program that will
tell us that the menu selection routine works. What it does is ring the bell the same
number of times as the menu selection number. So, if item number four on the
menu is chosen, the bell rings four times and if item number five is chosen it rings
five times, etc. If item number seven is chosen, the program does an RTS and goes
back to the calling routine or mode.

0003-
0003-
002S-
00AA-

0006-
001 B-
0019-
0024-
002S
FC22-
FCSB
FC9C
FDOC
FDED
FF3A
FFSB-

OBOO- 20 SB FC
OB03- 20 41 09
OB06- BD BD
OBOB- AO AO AO
OBOB- AO AO AO
OBOE- AO AO AO
OB11- AO D3 Cl
OB14- CD DO CC
OB17- CS AO CD
OB1A- CS CE DS
OB1D- AO DO D2
OB20- CF C7 D2
OB23- Cl CD
OB2S- BD BD BD
OB28- BD BD
OB2A- CS CE D4
OB2D- CS D2 AO
OB30- D4 CB CS
OB33- AO CE DS
OB36- CD C2 CS
OB39- D2 AO CF
OB3C- C6 AO C2
OB3F- CS CC CC

1000 *************************************
1010 *** ***
1020 *** SAMPLE MENU PROGRAM ***
1030 *** ***
1040 *************************************
10SO *
1060 *
1070 *
lOBO *
1090 * CONSTANTS
1100 *
1110 BOXLEN
1120 LFTMRG
1130 RTMRG
1140 SYMBOL
11SO *
1160 *

. EQ $03

.EQ $03

.EQ $2S

.EQ $AA

1170 * EQUATES
11BO *
1190 TXTPTR
1200 CV2
1210 CH2
1220 CH
1230 CV
1240 BASCAL
12SO HOME
1260 CLREOL
1270 RDKEY
12BO GOUT
1290 BELL
1300 RETURN
1310 *
1320 *

.EQ $06

.EQ $1B

.EQ $19

.EQ $24

.EQ $2S

.EQ $FC22

.EQ $FCSB

.EQ $FC9C

. EQ $FDOC

.EQ $FDED

.EQ $FF3A

.EQ $FFSB

1330 * Clear the screen, print out the title
1340 * of the program and the selection menu
13SO * and save the position location of the
1360 * cursor for later.
1370 *
13BO START JSR HOME Clear the screen.
1390 JSR MSGPRT
1400 .HS BDBD

Print the message that follows.

1410 .AS - SAMPLE MENU PROGRAM"

1420 . HS BDBDBDBDBD

0842- D3 AO D9
084S- CF DS AO
0848- D7 Cl CE
084B- D4 AO D4
084E- CF AO AO
08Sl- AO D2 C9
08S4- CE C7 BA
08S7- SD SD
08S9- BC Bl BE
OSSC- AO CF CE
OSSF- CS
0860- SD
0861- BC B2 BE
0864- AO D4 D7
0867- CF
0868- SD
0869- BC
086C- AO
086F- D2
0872- SD
0873- BC
0876- AO
0879- DS
087B- SD

B3 BE
D4 CS
cs cs

B4 BE
C6 CF
D2

087C- BC BS BE
087F- AO C6 C9
0882- 06 cs
0884- 80
088S- BC B6 BE
0888- AO D3 C9
088B- D8
088C- 80
088D- BC B7 BE
0890- AO Dl OS
0893- C9 D4
089S- SD 80
0897- CS CE D4
089A- CS D2 AO
089D- C3 CS CF
08AO- C9 C3 CS
08A3- BA AO
OBAS- 00
08A6- AS 2S
OBAS- SS 18
08AA- AS 24
08AC- SS 19
08AE- 20 B4 08
08Bl- 4C DF 08

1430
1440

14SO
1460

1470
1480

1490
lSOO

1S10
1S20

1S30
1S40

lSSO
1S60

1S70
1S80

1590
1600
1610
1620
1630
1640
1650
1660
1670 *
1680 *

Getting Information Into Your Computer I 47

.AS -"ENTER THE NUMBER OF BELLS YOU WANT TO RING:"

.HS 8D8D

.AS -"<1> ONE"

.HS SD

.AS -"<2> TWO"

.HS 80

.AS -"<3> THREE"

.HS SD

.AS -"<4> FOUR"

.HS SD

.AS -"<S> FIVE"

.HS SD

.AS -"<6> SIX"

.HS SD

.AS -"<7> QUIT"

.HS 8080

.AS -"ENTER CHOICE : "

.HS 00
LDA CV
STA CV2
LDA CH
STA CH2
JSR BOX
JMP CURPOS

Save the current vertical
position of the cursor .
Save the current horizontal
position of the cursor.
Draw a title box.
Restore original cursor position.

1690 * Print a box around the title of the
1700 * program.

08B4- A9 00
08B6- SS 2S
08B8- SS 24
OSBA- 20 22
08BD- 20 DS
OSCO- A2 03
08C2- 20 ED
OSCS- A4 24
08C7- CO 03
08C9- DO F7
08CB- AO 2S
08CD- 84 24
08CF- CA
OSDO- DO FO
08D2- 20 DS

1710 *
1720 BOX
1730
1740

FC 1750
08 1760

1770
FD 1780 LOOP

1790
1800
1810
1820
1830
1840
18SO

08 1860
1870 *
1880 *

LDA #$0
STA CV
STA CH
JSR BASCAL
JSR LINE
LDX #BOXLEN
JSR COUT
LDY CH
CPY #LFTMRG
BNE LOOP
LDY #RTMRG
STY CH
DEX
BNE LOOP
JSR LINE

Start at row zero, column zero.

Position cursor.
Draw top line of box.
Get depth of box.
Draw middle lines
of box .
At end of left margin yet?
No, print more symbols.
Jump to start of
right margin.
End of box?
No, finish right margin.
Yes, finish right margin.

1890 * This subroutine prints out a line of
1900 * symbols. It checks CH to see if
1910 * it has past the 40th column and
1920 * wrapped around to column 0.

48 I Chapter 3

OBDS
OBD7-
OBDA
OBDC
OBDE-

A9 AA
20 ED FD
A4 24
DO F7
60

1930 *
1940 LINE
19SO
1960
1970
19BO
1990 *
2000 *

LDA # SYMBOL
JSR GOUT
LDY CH
BNE LINE
RTS

Get symbol.
Print it.
Done yet?
No, do more.

2010 * This subroutine restores the cursor
2020 * to its original position before the
2030 * box was drawn so that it i s ready to
2040 * prompt the user.
20SO *

OBDF- AS
OBEl- BS
OBE3- AS
OBES- BS
OBE7- 20
OBEA- 20

19 2060 CURPOS LDA CH2 Get old horizontal position.
Make it current position.
Get old v ertical position .
Make it current position .
Position cursor.

24 2070 STA CH
lB 20BO LDA CV2
2S 2090 STA CV
22 FC 2100 JSR BASCAL
9C FC 2110 JSR CLREOL Clear to the e nd of line.

2120 *
2130 *
2140 * This subroutine checks the keyboard
21SO * to see if a key is pressed. When it
2160 * is, the key that is pressed is
2170 *printed out. Then it's value is
21BO * checked to see if it is less than B
2190 * and equal to or greater than 1. If
2200 * is not, the program starts all over
2210 * again.

OBED
OBFO
OBF3-
0BFS
OBF7-
0BF9-

2220 *
20 OC FD 2230
20 ED FD 2240

JSR RDKEY
JSR GOUT
CMP # $BB
BCS RSTART
CMP #$Bl
BCC RSTART

Wait for a key
Print it.

press.

C9 BB 22SO Was it greater
Yes, restart.
No, was it less
Yes, restart.

than 7?
BO 13 2260
C9 Bl 2270 than l?
90 OF 22BO

OBFB- E9 Bl
OBFD- OA
OBFE- AB
OBFF- CB
0900- B9
0903- 4B
0904- BB
090S- B9
090B- 4B
0909- 60
090A- 4C

33 09

33 09

DF OB

3A FF 090D- 20
0910- BB
0911- DO FA
0913- FO FS

2290 *
2300 *
2310 * If the key presse d i s in the correct
2320 * range, value is normalized to numbers
2330 * in the 0 to 6 range and the n doubled.
2340 * The number thus g enerated is used as
23SO * an index into the table of jump
2360 * addresses.
2370 *
23BO SBC #$Bl
2390 ASL
2400 TAY
240S INY
2410 LDA TABLE,Y
2420 PHA
2430 DEY
2440 LDA TABLE,Y
24SO PHA
2460 RTS
2470 RSTART JMP CURPOS
24BO *
2490 *

Normalize entered digit .
Multiply it by 2.
Put into Y-register as index.

Retrieve address from table
and save it on the s t ack.

Jump to the subroutine chosen.
Start over.

2SOO * This is just a little routine that
2Sl0 * been included to demonstrate that the
2S20 *
2S30 *
2S40 *
2SSO *
2S60 *

menu selection is working. It is
entered with the Y-regis t e r
containing the number of bell rings
desired.

2S70 RNGBEL JSR BELL
2SBO DEY
2S90 BNE RNGBEL
2600 BEQ RSTART
2610 *
2620 *
2630 * The Y-register for the bell ringing
2640 * routine is set here.

091S- AO 01
0917- 4C OD 09
091A- AO 02
091C- 4C OD 09
091F- AO 03
0921- 4C OD 09
0924- AO 04
0926- 4C OD 09
0929- AO OS
092B- 4C OD 09
092E- AO 06
0930- 4C OD 09

0933- 14 09
093S- 19 09
0937- 1E 09
0939- 23 09
093B- 28 09
093D- 2D 09
093F- S7 FF

0941- 68
0942- 8S 06
0944- 68
094S- 8S 07
0947- AO 00
0949- E6 06
094B- DO 02
094D- E6 07
094F- Bl 06
09S1- FO 06
09S3- 20 ED FD
09S6- 4C 49 09
09S9- AS 07
09SB- 48
09SC- AS 06
09SE- 48
09SF- 60

26SO *
2660 ONE
2670
2680 TWO
2690
2700 THREE
2710
2720 FOUR
2730
2740 FIVE
27SO
2760 SIX
2770
2780 *
2790 *

Getting Information Into Your Computer I 49

LDY #$1
JMP RNGBEL
LDY #$2
JMP RNGBEL
LDY #$3
JMP RNGBEL
LDY #$4
JMP RNGBEL
LDY #$S
JMP RNGBEL
LDY #$6
JMP RNGBEL

2800 * This is the table of jump addresses.
2810 * The address minus 1 of the subroutine
2820 * that is to be jumped to is entered
2830 * in this table with the high-order
2840 * byte first.
28SO *
2860 TABLE
2870
2880
2890
2900
2910
2920
2930 *
2940 *

. DA ONE-1

. DA TW0-1

. DA THREE-1

. DA FOUR-1

.DA nvE-1

. DA SIX-1

. DA RETURN-1

Address of
Address of
Address of
Address of
Address of
Address of
Address of

selection 1 .
selection 2 .
selection 3 .
selection 4 .
selection S.
selection 6 .
selection 7 .

29SO * This is the message printing
2960 * subroutine.
2970 *
2980 MSGPRT
2990
3000
3010
3020
3030 NEXT
3040
30SO
3060 CONTIN
3070
3080
3090
3100 ENDPRT
3110
3120
3130
3140

PLA
STA TXTPTR
PLA
STA TXTPTR+1
LDY #$0
INC TXTPTR
BNE CONTIN
INC TXTPTR+1
LDA (TXTPTR), Y
BEQ ENDPRT
JSR COUT
JMP NEXT
LDA TXTPTR+1
PHA
LDA TXTPTR
PHA
RTS

Store address of text to
be printed in a zero
page pointer.

Increment 2-byte pointer
to text.

Get character.
Done yet?
No, print it.
Get next character.
Push the address of
where to resume the
onto the stack

and jump there.

program

Using an alphabetic menu
You should find that this menu program will fill most of your needs. But what

happens if you have more than nine items to choose from? This program is de
signed to work with a single key press, what can you do? The answer is simple.
Don't use numbers, use letters. If you use letters you will have the ability to have up
to 26 choices. And if you have more than that, you should consider using multiple
screens.

The ALPHABETIC MENU PROGRAM is almost identical to the numerical
menu program, and requires only a few minor changes to the original SAMPLE
MENU PROGRAM to produce. In this version, the number of items to choose
from was increased to 11 and the selections have been changed from 1-7 to A-K.
Aside from the obvious changes in the text that gets displayed on the screen,
changes were made in lines 2330 and 2350. In these lines we check to see if the

50 I Chapter 3

keypress was greater than 'K' or less than 'N instead of greater than 7 and less than
1. Also, in line 2460, the data that was entered with the keypress is normalized to
the 0 to 10 range by subtracting the ASCII value plus $80 (altogether $Cl) of the
letter 'N . The only other changes to the program were to put in the new addresses
for the routines in the jump table and to add the extra routines that were required.

While the ALPHABETIC MENU and the previous program SAMPLE MENU
are almost the same, I have included a complete listing of the ALPHABETIC
MENU so that you can compare the two listings and see exactly how the changes
were made.

0003-
0003-
002S-
00AA-

0006-
0018-
0019-
0024-
002S
FC22-
FCS8-
FC9C
FDOC
FDED
FF3A
FFS8-

0800- 20 S8 FC
0803- 20 84 09
0806- 8D 8D
0808- AO AO AO
080B- AO AO AO
080E- AO AO Cl
0811- CC DO C8
0814- Cl C2 CS
0817- D4 C9 C3
081A- AO CD CS
0810- CE DS AO
0820- DO D2 CF
0823- C7 D2 Cl
0826- CD
0827- 8D 8D 8D
082A- 8D 8D
082C- CS CE D4
082F- CS D2 AO

1000 *************************************
1010 *** ***
1020 *** ALPHABETIC MENU PROGRAM ***
1030 *** ***
1040 *************************************
lOSO *
1060 *
1070 *
1080 *
1090 * CONSTANTS
1100 *
1110 BOXLEN
1120 LFTMRG
1130 RTMRG
1140 SYMBOL
llSO *
1160 *

.EQ $0 3

.EQ $03

.EQ $2S

.EQ $AA

1170 * EQUATES
1180 *
1190 TXTPTR
1200 CV2
1210 CH2
1220 CH
1230 CV
1240 BASCAL
12SO HOME
1260 CLREOL
1270 RDKEY
1280 GOUT
1290 BELL
1300 RETURN
1310 *
1320 *

.EQ $06

.EQ $18

.EQ $19

.EQ $24

.EQ $2S

.EQ $FC22

.EQ $FCS8

.EQ $FC9C

.EQ $FDOC

.EQ $FDED

.EQ $FF3A

.EQ $FFS8

1330 * Clear the screen, print out the title
1340 * of the program and the selection menu
13SO * and save the position location of the
1360 * cursor for later.
1370 *
1380 START JSR HOME Clear the screen.
1390 JSR MSGPRT Print the message that follows.
1400 .HS 8D8D

1410 .AS - ALPHABETIC MENU PROGRAM"

1420 . HS 8D8D8D8D8D

0832- D4 CS CS
083S- AO CE DS
0838- CD C2 CS
083B- D2 AO CF
083E- C6 AO C2
0841- cs cc cc
0844- D3 AO D9
0841- CF DS AO
084A- Dl Cl CE
084D- D4 AO D4
OSSO- CF AO AO
08S3- AO D2 C9
08S6- CE Cl BA
08S9- SD SD
08SB- BC Cl BE
08SE- AO CF CE
0861- cs
0862- SD
0863- BC C2 BE
0866- AO D4 Dl
0869- CF

C3 BE
D4 CS

1430
1440

14SO
1460

1410
1480 086A- SD

086B- BC
086E- AO
0811- D2
0814- SD
08lS- BC
0818- AO
OBlB- DS
OBlD- SD

cs cs 1490
lSOO

C4 BE
C6 CF
D2

08lE- BC CS BE
0881- AO C6 C9
0884- D6 CS
0886- SD
0881- BC C6 BE
088A- AO D3 C9
088D- D8

Cl BE
D3 CS

1S10
1S20

1S30
1S40

lSSO
1S60 088E- SD

088F- BC
0892- AO
089S- D6
0898- SD

CS CE lSlO
1S80

0899- BC CS BE
089C- AO CS C9
089F- Cl CB D4
08A2- SD
08A3- BC C9 BE
08A6- AO CE C9
08A9- CE CS
08AB- SD
08AC- BC CA BE
08AF- AO D4 CS
08B2- CE
08B3- SD
08B4- BC CB BE
08Bl- AO Dl DS
08BA- C9 D4
08BC- SD SD
08BE- CS CE D4
08Cl- CS D2 AO
08C4- C3 CS CF
OBCl- C9 C3 CS
08CA- BA AO
08CC- 00
08CD- AS 2S
08CF- SS 18
08Dl- AS 24
08D3- SS 19
08DS- 20 DB 08
08D8- 4C 06 09

1S90
1600

1610
1620

1630
1640

16SO
1660

1610
1680
1690
1100
1110
1720
1130
1140
1150 *
1160 *

Getting Information Into Your Computer I 51

.AS -"ENTER THE NUMBER OF BELLS YOU WANT TO RING:"

.HS 8D8D

.AS -"<A> ONE"

.HS SD

.AS -" TWO"

.HS SD

.AS -"<C> THREE"

.HS SD

.AS -"<D> FOUR"

.HS SD

.AS -"<E> FIVE"

.HS SD

.AS -"<F> SIX"

.HS SD

.AS -"<G> SEVEN"

.HS SD

.AS -"<H> EIGHT"

.HS SD

.AS -"<I> NINE"

.HS SD

.AS -"<J> TEN"

.HS SD

.AS -"<K> QUIT"

.HS 8D8D

.AS -"ENTER CHOICE: "

.HS 00
LDA CV
STA CV2
LDA CH
STA CH2
JSR BOX
JMP CURPOS

Save the current vertical
position of the cursor.
Save the current horizontal
position of the cursor.
Draw a title box.
Restore original cursor position.

1110 * Print a box around the title of the

52 I Chapter 3

08DB- A9 00
08DD- SS 2S
08DF- SS 24
08El- 20 22
08E4- 20 FC
08E7- A2 03
08E9- 20 ED
08EC- A4 24
08EE- CO 03
08FO- DO F7
08F2- AO 2S
08F4- 84 24
08F6- CA
08F7- DO FO
08F9- 20 FC

1780 * program.
1790 *
1800 BOX
1810
1820

FC 1830
08 1840

18SO
FD 1860 LOOP

1870
1880
1890
1900
1910
1920
1930

08 1940
19SO *
1960 *

LDA #$0
STA CV
STA CH
JSR BASCAL
JSR LINE
LOX #BOXLEN
JSR COUT
LDY CH
CPY #LFTMRG
BNE LOOP
LDY #RTMRG
STY CH
DEX
BNE LOOP
JSR LINE

Start at row zero, column zero.

Position cursor.
Draw top line of box.
Get depth of box.
Draw middle lines
of box.
At end of left margin yet?
No, print more symbols.
Jump to start of
right margin.
End of box?
No, finish right margin.
Yes, finish right margin.

1970 * This subroutine prints out a line of
1980 * symbols. It checks CH to see if
1990 * it has past the 40th column and
2000 * wrapped around to column 0.
2010 *

08FC- A9
08FE- 20
0901- A4
0903- DO
090S- 60

AA 2020 LINE LOA #SYMBOL
JSR COUT
LOY CH

Get symbol.
Print it.
Done yet?
No, do more .

0906-
0908-
090A-
090C-
090E-
0911-

0914-
0917-
091A-
091C-
091E-
0920-

0922-
0924-
092S-
0926-
0927-

ED FD 2030
24 2040
F7 20SO BNE LINE

RTS 2060
2070 *
2080 *
2090 * This subroutine restores the cursor
2100 * to its original position before the
2110 * box was drawn so that it is ready to
2120 * prompt the user.
2130 *

AS 19 2140 CURPOS LDA CH2
CH
CV2
CV

Get old horizontal position.
Make it current position.
Get old vertical position.
Make it current position.
Position cursor.

BS 24 21SO STA
AS 18 2160 LDA
SS 2S 2170 STA
20 22 FC 2180 JSR
20 9C FC 2190 JSR

BAS CAL
CLREOL Clear to the end of line.

2200 *
2210 *
2220 * This subroutine checks the keyboard
2230 * to see if a key is pressed. When it
2240 * is, the key that is pressed is
22SO * printed out. Then it's value is
2260 * checked to see if it is less than 'L'
2270 * and equal to or greater than 'A'. If
2280 * is not, the program starts all over
2290 * again.
2300 *

20 OC FD 2310
20 ED FD 2320

JSR RDKEY
JSR COUT
CMP #$CC
BCS RSTART
CMP #$Cl
BCC RSTART

Wait for a key
Print it.

press.

C9 CC 2330
BO 13 2340
C9 Cl 23SO
90 OF 2360

2370 *
2380 *

Was it greater
Yes, restart.
No, was it less
Yes, restart.

than 'K'?

than 'A'?

2390 * If the key pressed is in the correct
2400 * range, value is normalized to numbers
2410 * in the 0 to 10 range and then doubled.
2420 * The number thus generated is used as
2430 * an index into the table of jump

E9 Cl
OA
AS
cs
B9 6E 09

2440 * addresses.
24SO *
2460
2470
2480
248S
2490

SBC #$Cl
ASL
TAY
INY
LOA TABLE,Y

Normalize entered digit.
Multiply it by 2.
Put into Y-register as index.

Retrieve address from table

092A- 48
092B- 88
092C- B9 6E 09
092F- 48
0930- 60
0931- 4C 06 09

0934- 20 3A FF
0937- 88
0938- DO FA
093A- FO FS

093C- AO 01
093E- 4C 34 09
0941- AO 02
0943- 4C 34 09
0946- AO 03
0948- 4C 34 09
094B- AO 04
094D- 4C 34 09
0950- AO 05
0952- 4C 34 09
0955- AO 06
0957- 4C 34 09
095A- AO 07
095C- 4C 34 09
095F- AO 08
0961- 4C 34 09
0964- AO 09
0966- 4C 34 09
0969- AO OA
096B- 4C 34 09

096E- 3B 09
0970- 40 09
0972- 45 09
0974- 4A 09
0976- 4F 09
0978- 54 09
097A- 59 09
097C- SE 09
097E- 63 09
0980- 68 09
0982- 57 FF

0984- 68
0985- 85 06
0987- 68
0988- 85 07
098A- AO 00

Getting Information Into Your Computer I 53

2500
2510
2520
2530
2540
2550 RSTART
2560 *
2570 *

PHA
DEY
LDA TABLE,Y
PHA
RTS
JMP CURPOS

and save it on the stack.

Jump to the subroutine chosen.
Start over.

2580 * This is just a little routine that
2590 * been included to demonstrate that the
2600 * menu selection is working . It is
2610 * entered with the Y-register
2620 * containing the number of bell rings
2630 * desired .
2640 *
2650 RNGBEL JSR BELL
2660 DEY
2670 BNE RNGBEL
2680 BEQ RSTART
2690 *
2700 *
2710 * The Y-register for the bell ringing
2720 * routine is set here.
2730 *
2740 ONE
2750
2760 TWO
2770
2780 THREE
2790
2800 FOUR
2810
2820 FIVE
2830
2840 SIX
2850
2860 SEVEN
2870
2880 EIGHT
2890
2900 NINE
2910
2920 TEN
2930
2940 *
2950 *

LDY #$1
JMP RNGBEL
LDY #$2
JMP RNGBEL
LDY #$3
JMP RNGBEL
LDY #$4
JMP RNGBEL
LDY #$5
JMP RNGBEL
LDY #$6
JMP RNGBEL
LDY #$7
JMP RNGBEL
LDY #$8
JMP RNGBEL
LDY #$9
JMP RNGBEL
LDY #$A
JMP RNGBEL

2960 * This is the table of jump addresses.
2970 * The address minus 1 of the subroutine
2980 * that is to be jumped to is entered
2990 * in this table with the high-order
3000 * byte first.
3010 *
3020 TABLE
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130 *
3140 *

.DA ONE-1

.DA TW0-1

.DA THREE-1

.DA FOUR-1

.DA FIVE-1

.DA SIX-1

.DA SEVEN-1

.DA EIGHT-1

.DA NINE-1

. DA TEN-1

. DA RETURN-1

Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address

of select on A.
of select on B.
of select on C.
of select on D.
of select on E.
of select on F .
of select on G.
of select on H.
of select on I.
of select on J.
of select on K.

3150 * This is the message printing
3160 * subroutine.
3170 *
3180 MSGPRT PLA
3190 STA TXTPTR
3200 PLA
3210 STA TXTPTR+l
3220 LDY #$0

Store address of text to
be printed in a zero
page pointer .

1111:11

]1:1

54 I Chapter 3

098C- E6 06
098E- DO 02
0990- E6 07
0992- Bl 06
0994- FO 06
0996- 20 ED FD
0999- 4C BC 09
099C- AS 07
099E- 48
099F- AS 06
09Al- 48
09A2- 60

3230 NEXT
3240
32SO
3260 CONT IN
3270
3280
3290
3300 ENDPRT
3310
3320
3330
3340

INC TXTPTR Increment 2-byte pointer
BNE CONT IN to text.
INC TXTPTR+l
LDA (TXTPTR), Y Get character.
BEQ ENDPRT Done ye t ?
JSR GOUT No , print it.
JMP NEXT Get next charac t er.
LDA TXTPTR+l Push the address of
PHA where t o resume the program
LDA TXTPTR onto the s tack
PHA
RTS and jump there.

Chapter4

STEALING CONTROL OF THE
OUTPUT

Did you ever wish that there were some way that you could see the control
characters that some programmers hide in the names of programs saved out to a
disk? Have you ever had a need to customize the interface between your printer and
your computer? Perhaps your printer doesn't recognize a blank line and must be
sent a space character before a carriage return. Or maybe you want to print some
thing out on your printer in expanded mode but are annoyed by the fact that the
expanded mode is cancelled automatically when the printer receives a carriage
return and must be reinitialized. Are you tired of continually typing " CTRL-1
80N" or some other setup string required by your printer?

If you are looking for ways to overcome these and other annoying situations that
deal with transferring data from your computer to some external device, fret not.

55

;, I

56 I Chapter 4

After you read this chapter, you should be able to find a way to let your Apple do all
the work for you. The secret to making the Apple do all of the work is two memory
locations on page zero known as CSWL and CSWL + 1 ($36 and $37) . It is
through the proper use of these two locations, that you will learn how to steal
control away from the Apple's normal output routines , and direct it to your own
machine language program.

If you were to get into the Apple's monitor mode, by typing CALL -151 from
either BASIC, and then entered the monitor command ' FDEDL', the first two lines
you would see printed on the screen would look like this:

FDED
FDFO-

6C 3600
C9AO

JMP
CMP

($0036)
#$AO

The subroutine located at $FDED is called COUT and is the routine that the
Apple jumps to every time it wants to print out a character. You'll notice that the
first thing this routine does is jump indirectly, through page zero locations $36 and
$37, to the real output routine. In an Apple without DOS, if you were to examine
locations $36 and $37, you'd find that the Apple jumps right back to $FDFO, which
is the very next instruction after the indirect jump. $FDFO is called COUTl and is
the routine that prints everything out to the screen .

At first glance, this .method of programming might seem a bit odd, but if you
think about it for a minute, you 'II see that by adding the indirect jump instruction as
the first line of the routine, characters that are to be printed out can first be diverted
to any other desired subroutine. And this in fact, is what happens when DOS is
active or when a printer is connected to the system. When DOS is active, charac
ters to be output are first passed to a routine that starts at $9EBD and when a printer
is active, characters are passed to ROM routines located on the interface card.
Now, if we place the address of our own output routine in locations $36 and $37,
and make sure it stays there despite DOS, then we'll be able to do all of the things I
mentioned earlier, and more.

Fixing a problem with some parallel printers
The first program we're going to talk about in this chapter is what is usually

classified as a patch, because it fixes a specific problem that really shouldn't have
occurred to begin with. For those of you that use Centronics or Centronics-com
patible parallel printers you may encounter a problem where the printer will not
respond to a blank print statement such as this :

IO PRINT

Normally, statements such as this are put in a program to produce a formatted
output that is pleasing to the eye. Centronics printers, and some others as well, will

Stealing Control Of The Output I 57

not respond to a lone carriage return, which is what is generated by line 10, and
require that at least one character be printed on a line before the carriage return is
recognized. The PARALLEL PRINTER PATCH program intercepts all characters
that are being printed out and wherever it finds a carriage return, it first prints a
space and then the carriage return, insuring that printers experiencing this problem
will always respond as you originally intended.

This is done by replacing the address of the output routine, which is stored in
locations $36 and $37, with the address of this program. That job is handled by the
routine in lines 1230 to 1310.

Line 1230 gets the low byte of the address of the new output routine while line
1240 gets the high byte of that address. Lines 1250 and 1260 store the address of the
new output routine in the output hooks so that anytime a character is supposed to be
printed out, it is routed to our program first.

With programs like this, that alter output hooks, programmers usually have two
versions of the program: one that does an RTS right after line 1260 for systems

0036-
03DO-
03EA
C200-

0300- A9 13
0302- AO 03
0304- 85 36
0306- 84 37
0308- AD DO
030B- C9 4C
030D- DO 03
030F- 20 EA
0312- 60

0313- C9 8D
0315- DO 07
0317- A9 AO
0319- 20 02
031C- A9 8D
031E- 4C 02

1000 * *************************************
1010 * *** ***
1020 * *** PARALLEL PRINTER PATCH ***
1030 * *** ***
1040 * *************************************
1050 *
1060 *
1070 *
1080
1090 *
1100 *
1110 * EQUATES
1120 *
1130 CSWL
1140 WARMDOS
1150 CONNECT
1160 SLOT
1170 *
1180 *

.OR $300

. EQ $36

.EQ $3DO

.EQ $3EA

.EQ $C200

1190 * Replace the normal output routine
1200 * with this program by changing the
1210 *output hooks $36 and $37.
1220 *
1230
1240
1250
1260

03 1270
1280
1290

03 1300
1310 NODOS
1320 *

LDA #START
LDY /START
STA CSWL
STY CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get address of start of
program and store it in
the output hooks.

See if DOS is present.

No it's not, return.
It is, connect through DOS.
Return to caller.

Check the character that is being
output by the computer to see if it
is a carriage return. If it is print
a space first and then print a
carriage return.

1330 *
1340 *
1350 *
1360 *
1370 *
1380 *
1390 *
1400 START
1410
1420

C2 1430
1440

C2 1450 PRINT

CMP #$8D
BNE PRINT
LDA #$AO
JSR SLOT+2
LDA #$8D
JMP SLOT+2

Is it a carriage return?
No, print it.
Yes, print a
space first and then a
carriage return.
Print contents of accumulator.

58 I Chapter 4

without DOS, and one that does a JSR $3EA for systems with DOS. This latter one
is necessary for systems with DOS, because DOS modifies the hooks and sets up its
own output routine. The JSR $3EA makes sure there will be no conflicts. In
systems without DOS, the information iri locations $3EA to $3EC is random and
could cause the machine to hang up if jumped to, hence the need for two versions of
the program.

However, for the price of a few extra bytes of code, we can test to see if DOS is
present in the computer and then connect the output hooks by the appropriate
manner. That's what the code in lines 1270 to 1310 does.

The actual program patch starts at line 1400 where the first thing that is done is
the character being output is checked to see if it is a carriage return. If the character
that is intercepted is a carriage return , first a space is printed out (lines 1420 and
1430) and then a carriage return is printed out (lines 1440 and 1450). If it's not, the
program branches to line 1450 and prints the character on the printer, which here is
connected to a card in slot 2. If your printer is in a different slot, just change the
equate in line 1160. The 2 that is added to SLOT in lines 1430 and 1450, is for Apple
parallel interface cards. If an Apple serial interface card is used, and this patch is
required , a 7 should be used instead.

Printer interface cards from other manufacturers may require other numbers . To
find out, plug your printer card with the printer attached to it and on, into slot 1 and
then type PR#l. Then, while the printer is activated, look at what number is stored
in location $36. This can be done by typing CALL-151 and then typing the number
36 and a carriage return. The computer will respond with 0036- XY, where XY is
the number to be added to SLOT.

As you can see, this routine is very short (only 33 bytes long) and it can easily sit
in the unused portion of page three. To use this routine, instead of typing PR#2, all
you do is type CALL 768. The routine can still be turned off by typing PR#O.

This program showed you how it is possible to detect a particular character and
then send out another character or set of characters in its place. You could easily
modify this program to send a line feed every time it detected a carriage return, for
those printers that require it, or you could use it to send codes to the printer to
change its mode from normal to expanded, or italics, etc. The possibilities are
limited only by your imagination.

Getting more out of your Epson printer
The Epson printer is probably one of the most widely used printers available

today. The reason for this is its low price and its versatility. The original Epson
MX-80 was able to print in condensed, normal and expanded (double width)
modes as well as combinations of the above. For example, you could combine
condensed and expanded to form a bold, or enhanced, mode.

When trying to use the expanded mode, by itself or in combination with another
mode, you'll very quickly discover one of the shortcomings of the Epson printer:
the expanded mode is automatically cancelled when a carriage return is encoun-

0006-
0008-
0036-
03DO-
03EA
C202-
FC58-
FDED-

Stealing Control Of The Output I 59

1000 *************************************
1010 *** ***
1020 *** EPSON PRINTER PATCH ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *
1150 *

.OR $0300

1160 * EQUATES
1170 *
1180 NFLAG
1190 TXTPTR
1200 CSWL
1210 WARMDOS
1220 CONNECT
1230 PRINTER
1240 HOME
1250 COUT
1260 *
1270 *

.EQ $6

.EQ $8

.EQ $36

.EQ $3DO

.EQ $3EA

.EQ $C202

.EQ $FC58

.EQ $FDED

1280 * Here the program name and copyright
1290 *notice are printed out.

0300- 20
0303- A9
0305- AO
0307- 20

1300 *
58 FC 1310 JSR HOME

LDA #TEXT
LDY /TEXT
JSR MSGPRT

Clear
Point
to be
Print

screen.
to text
printed.
it.

53 1320
03 1330
42 03 1340

030A- A9 00
030C- 85 06
030E- A9 21
0310- AO 03
0312- 85 36
0314- 84 37
0316- AD DO
0319- C9 4C
031B- DO 03
031D- 20 EA
0320- 60

0321- C9 94
0323- FO 15
0325- C9 BE
0327- DO 02
0329- 85 06

1350 *
1360 *
1370 *
1380 *
1390 *
1400 *
1410
1420
1430
1440
1450
1460

03 1470
1480
1490

03 1500

This subroutine sets the Control-N
(NFLAG) to zero and sets up the
output hooks to point to the patch
program that begins on line 1680.

LDA #$0 Set NFLAG to
zero.
Get address of
patch and save
it in output
hooks.
See if DOS is
present.

flag

1510 NODOS
1520 *
1530 *

STA NFLAG
LDA #START
LDY /START
STA CSWL
STY CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

No, return.
Connect to DOS.
Return.

1540 * This routine checks to see if the
1550 * character being printed is a
1560 * Control-T, Control-Nor a carriage
1570 * return. If it is a Control-T it
1580 * cancels the expanded mode. If it
1590 * is a Control-N it modifies NFLAG
1600 * to indicate that Control-N mode is
1610 * active. If it is a carriage return,
1620 * it checks NFLAG to see if the
1630 * Control-N mode is active. If it is,
1640 * every time a carriage return is
1650 * printed, a Control-N is printed right
1660 * after it.
1670 *
1680 START
1690
1700
1710
1720

CMP #$94
BEQ CANCEL
CMP #$8E
BNE PRINT1
STA NFLAG

Is it Control-T?
Yes, to normal.
Is it Control-N?
No, print character.
Yes, NFLAG = $8E.

60 I Chapter 4

032B- 20
032E- C9
0330- DO
0332- AS
0334- FO
0336- 20
0339- 60

02 C2
8D
07
06
03
02 C2

1730 PRINTl
1740
17SO
1760
1770
1780 PRINT2
1790 RETURN
1800 *
1810 *

JSR
CMP
BNE
LDA
BEQ
JSR
RTS

PRINTER
#$8D
RETURN
NFLAG
RETURN
PRINTER

Print character.
Was it a carriage r e turn?
No, next character.
Control-N active?
No, next character.
Keep active.
Return.

1820 * This subroutine cancels the Expanded
1830 * print mode, resets the Control-N flag
1840 * and leaves the user with the printer
18SO * active.

033A- 20 02 C2
033D- A9 00
033F- 8S 06
0341- 60

1860 *
1870 CANCEL
1880
1890
1900
1910 *
1920 *

JSR PRINTER
LDA #$0
STA NFLAG
RTS

Print Control-T.
Reset NFLAG to
zero.
Return .

1930 * This is the message printing routine .

0342- 8S 08
0344- 84 09
0346- AO 00
0348- Bl 08
034A- FO 06
034C- 20 ED
034F- C8
03SO- DO F6
03S2- 60

1940 *
19SO MSGPRT
1960
1970
1980 LOOP
1990

FD 2000
2010
2020
2030 ENDPRT
2040 *
20SO *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR), Y
BEQ ENDPRT
JSR COUT
INY
BNE LOOP
RTS

Save point e r to
text to be printed.

Get character.
Done yet?
No, print character .

Get next character.
Return to caller .

2060 * This is the text printed by the program.
2070 *

03S3- CS DO D3
03S6- CF CE AO
03S9- DO D2 C9
03SC- CE D4 CS
03SF- D2 AO DO
0362- Cl D4 C3
036S- C8 2080 TEXT
0366- 8D 8D 2090
0368- C2 D9 AO
036B- CA DS CC
036E- CS D3 AO
0371- C8 AE AO
0374- C7 C9 CC
0377- C4 CS D2 2100
037A- 8D 2110
037B- C3 CF DO
037E- D9 D2 C9
0381- C7 C8 D4
0384- AO A8 C3
0387- A9 AO Bl
038A- B9 B8 B2 2120
038D- 8D 2130
038E- Cl CC CC
0391- AO D2 C9
0394- C7 C8 D4
0397- D3 AO D2
039A- CS D3 CS
039D- D2 D6 CS
03AO- C4 2140
03A1- 8D 8D 8D
03A4- 00 21SO

. AS -"EPSON PRINTER PATCH"

.HS 8D8D

.AS -"BY JULES H. GILDER"

.HS 8D

.AS -"COPYRIGHT (C) 1982"

.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8DOO

tered. This makes it impossible to list a program out in the expanded or bold
format. But all is not lost, by stealing control away from the output, as we've
learned to do with the last program, we can overcome the Epson's design flaw.

Stealing Control Of The Output I 61

The expanded mode is activated by sending a Control-N to the printer and
deactivated by sending a Control-T to the printer or by the printer receiving a
carriage return. So, in order to retain the printer in the expanded mode, all we have
to do is detect when the printer is being sent a carriage return and the immediately
after that, send the printer another Control-N. This will insure that the printer will
remain in the expanded mode, or any other combination mode that requires the
expand option to be active (e.g. bold). To cancel the expanded mode, a Control-T
is sent.

This is exactly what the EPSON PRINTER PATCH program does. After print
ing out the program title (lines 1310 to 1340), the program initializes NFLAG to
zero (lines 1410 and 1420). NFLAG is used to determine if a Control-N has been
sent at least once to the printer, so that the program will know if it must send a
Control-N after every carriage return. The next thing that the program does is to
find the starting address of the program, and store that address in the output hooks
(lines 1430 to 1460). As we did in the last program, a check is made to see if DOS is
present and the connection to DOS is made if it is (lines 14 70 to 1510).

The actual program that does the checking starts on line 1680. The first thing that
is done here is to check if a Control-T has been entered. If it has, the program
jumps to a routine that cancels the expanded mode (line 1870) and also stores a
zero in NFLAG. If the character sent to be printed was not a Control-T, a check is
made to see ifit is a Control-N. lfit is, the Control-N is stored in NFLAG and then
sent to the printer (line 1730). If it wasn't a Control-N, the program branches to
1730 to send the character to the printer.

After the character has been printed, it still remains in the accumulator so a
check can be made to see if it was a carriage return (line 1740). If it wasn't, the
program executes an RTS instruction (line 1790) and returns to get the next charac
ter, if any. If it was a carriage return, the program checks NFLAG to see if the
expanded mode is active. If it is, a Control-N is sent to the printer to keep it active
(lines 1760 to 1780) and then an RTS instruction is executed.

For those of you who do not own Epson printers, don't despair, there are pro
grams here that will help you too. Did you ever get frustrated because you wanted
to list a program so you typed PR# < slot> and the program started listing out in
40 column format? If you have, you'll understand the frustration of having to reset,
activate the printer and try to remember to tell the printer to print 80 columns wide .

. With the next program we're going to look at, the PRINTER SETUP PROGRAM,
you'll no longer have to worry about making sure your printer is in the right mode.
All you do is enter your setup string the first time you use this program, and then,
for as long as power is applied and page three of memory remains intact, all you'll
have to do to activate the printer in the correct mode ·is to CALL 825.

Set up your printer automatically
Having your printer ready to operate in the mode you desire is made possible by

using a program - TEXT INPUT ROUTINE - that we developed earlier in the

I

11

62 I Chapter 4

book in Chapter 3. In fact , if you look at lines 1750 to 1840, you'll see exactly the
same program from Chapter 3. We'll come back to it later.

If you glance quickly at the PRINTER SETUP PROGRAM, you'll see that it
differs somewhat from the programs we have had until now, because all of the text
that is going to be printed out is at the beginning of the program instead of at the end
of it (lines 1360 to 1480). The reason for this is that the text is only going to be used
once, the first time that the program is run, and we want the part that's going to be
used over again to remain in page 3 of memory. If the text were at the end of the
program, the section of the program we want to remain permanently would reside
in page 2, which is the input buffer. Thus, if a sufficiently long line of text were
entered, it would get wiped out. The JMP instruction that precedes the text mes
sages is only there so that the program can be run from its starting address.

The program begins on line 1550, where the screen is cleared, the title and
copyright notice are printed, and the user is asked what slot his printer is in . Once
the slot number is entered (line 1590) it is checked to make sure that the number is
in the range of 0 to 7 (lines 1610 to 1640). If it's not, then the program starts over
again. Once a legal entry has been verified, the most-significant nibble is set equal
to zero (line 1650), resulting in a byte that contains the actual slot number and not
its ASCII equivalent. This value is stored temporarily on zero page in a memory
location labelled SlDT (line 1660).

Now that the program knows what slot your printer interface card is in , it asks
the user what the setup string is that the printer requires (e.g. Control-I 80N, etc.).
The input of this string and the storage of it in memory is handled by the text input
routine that was discussed in Chapter 3 (line 1760). The data are taken in and stored
in a short buffer that starts immediately after the program ends.

In this chapter we have been discussing programs that steal control away from
the output. Careful examination of the listing of the PRINTER SETUP PRO
GRAM , will show you that the subroutine that loads an address into $36 and $37 is
conspicuously missing. How then are we affecting the output? The answer lies in
that portion of the program that begins on line 1930. Here, a routine in the Apple
F8 monitor ROM is used to simulate the PR# <slot> that we usually do from the
keyboard or a BASIC program. Whenever a PR# <slot> is executed, $36 and
$37 are automatically changed to point to the software that is in the ROMs on the
interface card. For Apple's parallel interface and slot number 1 this would result in
$36 and $37 containing the address $C102, low-order byte first.

Back to our program, in line 1930, the slot number that was saved earlier, is now
retrieved and placed into the accumulator and a jump is made to OUTPORT, to
simulate the PR# <slot>. Next, a check is made to see if DOS is present , and if it
is , the new output hooks are connected through DOS (lines 1950 to 1980). With the
printer now connected, the address of the buffer that contains the setup string is
pointed to by the accumulator and the Y-register and the program falls into the
message printing subroutine. This subroutine prints out the characters that we
entered earlier and sets the printer to the proper mode . Upon hitting the RTS of the
message printing subroutine, control is returned to the program that originally

Stealing Control Of The Output I 63

called PRINTER SETUP. Once the information has been entered in the buffer, and
assuming the slot number that is stored on zero page remains intact along with page
3, the printer can be initialized without doing a PR# <slot> but by simply doing a
CALL825.

1000 *************************************
1010 *** ***
1020 *** PRINTER SETUP PROGRAM ***
1030 *** ***
1040 *** COPYRIGHT (Cl 19B2 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
lOBO *************************************
1090 *
1100 *
1110 *
1120 .OR $23B
1130 *
1140 *
11SO * EQUATES
1160 *

0006- 1170 TXTPTR .EQ $6
OOOB- 11BO SLOT .EQ $B
0200- 1190 IN .EQ $200
03DO- 1200 WARMDOS .EQ $3DO
FCSB- 1210 HOME .EQ $FCSB
FDOC- 1220 RD KEY .EQ $FDOC
FD6F- 1230 GETLNl .EQ $FD6F
FDED- 1240 GOUT .EQ $FDED
FE9S- 12SO OUTPORT .EQ $FE95

1260 *
1270 *

023B- 4C 00 03 12BO JMP START Run the program.
1290 *
1300 *
1310 * These are the text messages printed
1320 *out . by the program. The title is
1330 * printed first and then the printer

023B- DO D2 C9
023E- CE D4 CS
0241- D2 AO D3
0244- CS D4 DS
0247- DO AO DO
024A- D2 CF C7

1340 *
13SO *

slot and setup string are requested.

024D- D2 Cl CD 1360 TEXT! .AS -"PRINTER SETUP PROGRAM"
.HS BDBD 02SO- BD BD 1370

02S2- C2 D9 AO
02SS- CA DS CC
02SB- CS D3 AO
02SB- CB AE AO
02SE- C7 C9 CC
0261- C4 CS D2 13BO
0264- BD 1390
026S- C3 CF DO
026B- D9 D2 C9
026B- C7 CB D4
026E- AO AB C3
0271- A9 AO Bl
0274- B9 BB B2 1400
0277- BD 1410
027B- Cl CC CC
027B- AO D2 C9
027E- C7 CS D4
02B1- D3 AO D2
02B4- CS D3 CS
0287- D2 D6 CS

.AS -"BY JULES H. GILDER"

.HS SD

. AS -"COPYRIGHT (Cl 19B2"

.HS BD

64 I Chapter 4

028A- C4 1420
028B- 8D 8D 8D 1430
028E- D7 C8 Cl
0291- D4 AO D3
0294- CC CF D4
0297- AO C9 D3
029A- AO D9 CF
029D- DS D2 AO
02AO- DO D2 C9
02A3- CE D4 CS
02A6- D2 AO C9
02A9- CE BF AO
02AC- 00

1440
14SO

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D

.AS -"WHAT SLOT IS YOUR PRINTER IN? "

.HS 00
02AD- 8D 8D
02AF- CS CE D4
02B2- CS D2 AO

1460 TEXT2 .HS 8D8D

02BS- D4 C8 CS
02B8- AO D3 CS
02BB- D4 DS DO
02BE- AO D3 D4
02Cl- D2 C9 CE
02C4- Cl AO D4
02C7- C8 Cl D4
02CA- AO D9 CF
02CD- DS D2 AO
02DO- DO D2 C9
02D3- CE D4 CS
02D6- D2 CE CS
02D9- CS C4 D3
02DC- AO Cl CE
02DF- C4 AO D4
02E2- C8 CS CE
02ES- AO DO D2
02E8- CS D3 D3
02EB- AO D4 C8
02EE- CS AO BC
02Fl- D2 CS D4
02F4- DS D2 CE
02F7- BE AO CB
02FA- CS D9 BA 1470
PRINTERNEEDS AND THEN
02FD- 8D 8D 00 1480

1490 *
lSOO *

.AS -"ENTER THE SETUP STRING THAT YOUR
PRESS THE <RETURN> KEY:"

.HS 8D8DOO

1S10 * This section of code clears the
1S20 * screen and asks the user what slot
1S30 * the printer interface card is in.

0300- 20
0303- A9
030S- AO
0307- 20
030A- 20
030D- 20
0310- C9
0312- 90
0314- C9
0316- BO
0318- 29
031A- 8S

S8 FC
3B
02
4C 03
OC FD
ED FD
BO
EC
B8
E8
OF
08

1S40 *
lSSO START
1S60
1S70
1S80
1S90
1600
1610
1620
1630
1640
16SO
1660
1670 *
1680 *

JSR HOME
LDA #TEXTl
LDY /TEXTl
JSR MSGPRT
JSR RDKEY
JSR GOUT
CMP #$BO
BCC START
CMP #$B8
BCS START
AND #$F
STA SLOT

Clear screen.
Get pointer to
text to print.
Ask for slot.
Get response.
Echo on screen
Check that it
is between 0
and 7.

Make it a digit.
Save it.

1690 * This section asks the user for the
1700 * required setup string and stores it
1710 * in a buffer area.
1720 *
1730
1740
17SO
1760
1770

Get pointer to
text to print.
Ask for setup string.
Get string.

031C- A9 AD
031E- AO 02
0320- 20 4C 03
0323- 20 6F FD
0326- AO FF
0328- C8 1780 LOOPl

00 02 1790 0329- B9

LDA #TEXT2
LDY /TEXT2
JSR MSGPRT
JSR GETLNl
LDY #$FF
INY
LDA IN, Y Transfer string to a

032C- 99
032F- C9
0331- DO
0333- C8
0334- A9
0336- 99

SD 03
8D
FS

00
SD 03

1800
1810
1820
1830
1840
18SO
1860 *
1870 *

Stealing Control Of The Output I 65

STA BUFFER,Y
CMP #$8D
BNE LOOPl
INY
LDA #$0
STA BUFFER,Y

buffer area.

Ter~inate it with
a zero .

1880 * This is the warm entry into the
1890 * Printer Setup Program. When entered
1900 * here, the printer will be setup using
1910 * previously entered information.
1920 *

0339- AS 08 1930 PRNTRON LDA SLOT Get slot number.
Do PR# <slot>.
Check for DOS.

033B- 20 9S FE 1940 JSR OUTPORT
033E- AD DO 03 19SO LDA WARMDOS
0341- C9 4C 1960 CMP #$4C
0343- DO 03 1970 BNE NODOS
034S- 20 DO 03 1980 JSR WARMDOS
0348- A9 SD 1990 NODOS LDA #BUFFER
034A- AO 03 2000 LDY /BUFFER

2010 *
2020 *

No DOS, continue .
Connect through DOS .
Send setup string
to the printer.

2030 * This is the message printing routine .

034C- 8S
034E- 84
03SO- AO
03S2- Bl
03S4- FO
03S6- 20
03S9- C8
03SA- DO F6
03SC- 60

06
07
00
06
06
ED FD

03SD- 00

2040 *
20SO MSGPRT
2060
2070
2080 LOOP
2090
2100
2110
2120
2130 ENDPRT
2140 *
21SO *

STA TXTPTR Get pointer to
STY TXTPTR+l text to print.
LDY #$0
LDA (TXTPTR),Y Get character.
BEQ ENDPRT Done?
JSR COUT No, print characte r.
INY
BNE LOOP
RTS

Get next character.
Return.

2160 * This is where the setup string buffer
2170 * starts.
2180 *
2190 BUFFER .HS 00

How to TAB past 40 colwnns
When writing an Applesoft program that is to produce a printed report of some

kind as an output, programmers often find it desirable to TAB to a location that is
greater than 40. Unfortunately, Applesoft will not respond to such a command
properly and instead, will treat any TAB to a position of greater than 40 as a SPC
command. This can reek havoc on formatted outputs.

A solution to this problem however has been found and publicized widely by the
International Apple Core. The solution they presented was a short machine lan
guage program into which the user had to plug in the appropriate values. The
whole process was a bit cumbersome, so I wrote a program to automatically setup
the program with the appropriate data by the user simply answering two questions.
Known as the PRINTER TABBING DRIVER, this program asks the user what slot
the printer interface card is in (lines 1460 to 1490). The program waits until a key is
pressed (line 1500) and then echoes the character entered on the screen (line 1510).

After the number of the slot has been entered, the program checks to make sure
that a number between 1 and 7 was entered (lines 1520 to 1550) and then zeros out
the most significant nibble of the byte (line 1560). After storing this number inside

66 I Chapter 4

the LDA instruction of the tabbing program (line 1570), the number, which is still
in the accumulator, has $CO added to it (line 1580) to convert it into the high-order
byte of the printer card address. This byte is then stored inside a JSR instruction in
the tabbing program (line 1590) .

Next, the program asks what type of printer is being used: parallel , serial or a
Silentype (lines 1720 to 1740). The data entered is checked to make sure it is in the
range of 1 to 3 (lines 1760 to 1790), converted to a single digit (line 1800) and the
number entered is converted to a number in the range of 0 to 2 by subtracting l
from it (lines 1810 to 1820). This number is then transferred to the X-register to be
used as an index into a table (line 1830) and also temporarily stored in a zero page
location labelled DEVICE (line 1840).

Using the X-register, the program proceeds to retrieve the low-order byte of the
printer address from the first of three data tables and stores it inside the JSR
instruction of the tabbing program (lines 1850 to 1860). Next, the program gets the
low-byte of the address of the location used by the interface card to hold the column
count and stores it in the tabbing program (lines 1880 and 1890). A little bit of
calculation is needed to retrieve the high-order byte of the column count location.
This is done in lines 1890 to 2000.

0006-
0019-
0024-
0036-
003C-
003D-
003E-
003F-
0042-
0043-
03D0-
03EA-
07F9-
C100-
FC58-
FDOC
FDED
FE2 C
FE95-

1000 *************************************
1010 *** ***
1020 *** PRINTER TABBING DRIVER ***
1030 *** ***
1040 *** COPYRIGHT {C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 *
1140 * EQUATES
1150 *
1160 TXTPTR
1170 DEVICE
1180 CH
1190 CSWL
1200 AlL
1210 AlH
1220 A2L
1230 A2H
1240 A4L
1250 A4H
1260 WARMDOS
1270 CONNECT
1280 COLCNT
1290 PRINTER
1300 HOME
1310 RDKEY
1320 GOUT.
1330 MOVE
1340 OUTPORT
1350 *
1360 *

.EQ $06

.EQ $19

.EQ $24

. EQ $36

.EQ $3C

.EQ $3D

.EQ $3E

.EQ $3F

.EQ $42

.EQ $43

.EQ $3DO

.EQ $3EA

.EQ $7F9

. EQ $C100

.EQ $FC58

.EQ $FDOC

.EQ $FDED

.EQ $FE2C

.EQ $FE95

1370 * This section of the program clears
1380 * the screen, prints out the title of
1390 * the program and asks the user what
1400 * slot the printer card is in. It then
1410 * stores the slot number in the section

Stealing Control Of The Output I 67

1420 *of code that's going to be customized
1430 * and adds $CO to it and stores it as
1440 * the high-byte of a JSR instruction.
14SO *

0800- 20 SS
0803- A9 CD
OBOS- AO 08
0807- 20 Al
080A- 20 OC
080D- 20 ED
0810- C9 Bl
0812- 90 EC
0814- C9 BB
0816- BO EB
0818- 29 OF
081A- SD 7A
081D- 09 co
081F- SD 98

FC 1460 START
1470

JSR HOME
LDA #TEXTl
LDY /TEXTl
JSR MSGPRT
JSR RDKEY
JSR COUT
CMP #$Bl
BCC START
CMP #$B8
BCS START
AND #$OF
STA BEGIN+l
ORA #$CO

Clear screen.
Point to text
to be printed.
Print it.

1480
08 1490
FD lSOO Get answer.

Echo on screen.
Make sure it's
between 1 & 7

FD lSlO
1S20
1S30
1S40
lSSO
1S60

or start over.

08 1S70
1S80

Make it a digit.
Save it.
Convert it.

08 1S90
1600 *
1610 *

STA WARMPRT+2 Save it.

0822- A9 45
0824- AO 09
0826- 20 Al 08
0829- 20 OC FD
082C- C9 Bl
082E- 90 F9
0830- C9 B4
0832- BO FS
0834- 29 OF
0836- 38
0837- E9 01
0839- AA
083A- 85 19
083C- BD B2 08
083F- SD 97 08
0842- BD BS 08
084S- SD 9C 08
0848- AS 19
084A- OA
084B- OA
084C- OA
084D- 38
084E- ES 19
0850- 18
0851- 6D 7A 08
08S4- AA
08SS- CA
08S6- BD BS 08
08S9- SD 9B 08

08SC- A9 79
08SE- SS 3C
0860- A9 08
0862- SS 3D
0864- A9 Al
0866- SS 3E
0868- A9 08
086A- SS 3F

1620 * Here, the user is asked if output is
1630 * to a parallel, serial or Silentype
1640 * printer. The entry is converted to a
1650 * single digit and used as an index
1660 * into tables containing the program
1670 * modifications. Get index to TABLE3 by
1680 * using the formula:
1690 *
1700 *
1710 *
1720

Index = (DEVICE NMBR -1)*7 + SLOT-1

1730
1740
17SO REDO
1760
1770
1780
1790
1800
1810
1820
1830
1840
18SO
1860
1870
1880
1890
1900
1910
1920
1930
1940
19SO
1960
1970
1980
1990
2000
2010 *
2020 *

LDA #TEXT2
LDY /TEXT2
JSR MSGPRT
JSR RDKEY
CMP #$Bl
BCC REDO
CMP #$B4
BCS REDO
AND #$OF
SEC
SBC #$1
TAX
STA
LDA
STA
LDA
STA
LDA
ASL
ASL
ASL
SEC

DEVICE
TABLEl,X
WARMPRT+l
TABLE2,X
COUNT+2
DEVICE

SBC DEVICE
CLC
ADC BEGIN+l
TAX
DEX
LDA TABLE3,X
STA COUNT+l

Point to text
to be printed.
Print it.
Get answer.
Make sure it
is ·in 1 to 3
range or redo.

Make a digit.
Subtract 1 to
make an index
Transfer to X.
Save it too .
Get printer low
byte and save.
Get high-byte of
column count location.
Get device
type number
multiply by 7
(x 8 and -1)

Save result.

Add slot number.
Transfer to X.
Subtract 1.
Get column count
low-byte and save

2030 * Here, the program moves the modified
2040 * section of code down to page 3 ($300)
20SO * where it is designed to run.
2060 *
2070
2080
2090
2100
2110
2120
2130
2140

LDA #BEGIN
STA AlL
LDA /BEGIN
STA AlH
LDA #MSGPRT
STA A2L
LDA /MSGPRT
STA A2H

Store start of
program address
in Al.

Store end of
program addr.
in A2.

68 I Chapter 4

086C- A9 00
086E- 85 42
0870- A9 03
0872- 85 43
0874- AO 00
0876- 4C 2C

2150
2160
2170
2180
2190

FE 2200
2210 *
2220 *

LDA #$0
STA A4L
LDA #$3
STA A4H
LDY #$0
JMP MOVE

Store $300 in
A4 which is
start of
destination.
Zero Y-register.
Move code.

2230 * This is the actual tabbing driver
2240 * program. It gets moved down to $300
2250 * where it is designed to run. This
2260 * segment of the program initializes the
2270 * printer by doing the equivalent of a
2280 * PR# <slot> and then sending a
2290 * carriage return to the printer. It
2300 * then modifies the output hooks $36
2310 * and $37 to point to the part of this
2320 * program that handles TABs.

0879- A9 01
087B- 20 95 FE
087E- A9 8D
0880- 20 ED FD
0883- A9 lD
0885- 85 36
0887- A9 03
0889- 85 37
088B- AD DO 03
088E- C9 4C
0890- DO 03
0892- 20 EA 03
0895- 60

2330 *
2340 BEGIN
2350

LDA #$01
JSR OUTPORT
LDA #$8D
JSR GOUT
LDA #$1D
STA CSWL
LDA #$3

Load slot number
Do PR#<accum>.
Print carriage
return~

into accum.

0896- 20 02
0899- 48
089A- AD F9
089D- 85 24
089F- 68
08AO- 60

08Al- 85 06
08A3- 84 07
08A5- AO 00
08A7- Bl 06
08A9- FO 06
08AB- 20 ED
08AE- C8
08AF- DO F6
08Bl- 60

2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460 NODOS
2470 *
2480 *

STA CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Change output
hooks.

See i f DOS is
present and if
so connect
through it.
Otherwise, return.

2490 * Here the character in the accumulator
2500 * is printed out and also temporarily
2510 * saved on the stack while the column
2520 * count on the printer is picked up and
2530 * stored in $24 (cursor horizontal
2540 *position).
2550 *

Cl 2560 WARMPRT JSR PRINTER+2
2570 PHA

07 2580 COUNT LDA COLCNT
2590 STA CH
2600 PLA
2610 RTS
2620 *
2630 *

Print character.
Save it on the stack .
Get column count.
Save it in HTAB.
Retrieve character from

2640 * This is the message printing routine.
2650 *
2660 MSGPRT
2670
2680
2690 LOOP
2700

FD 2710
2720
2730
2740 ENDPRT
2750 *
2760 *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR) , Y
BEQ ENDPRT
JSR GOUT
INY
BNE LOOP
RTS

Get the address
of text to be
printed.
Get character.
If done, rtn.
If not print.
Increment pointer .
Get next character.
Return.

2770 * These are the data tables that
2780 * contain the modifications to the
2790 * TAB DRIVER program.
2800 *

08B2- 02 07 07 2810 TABLEl .HS 020707
2820 TABLE2 .HS 0705CF 08B5- 07 05 CF

08B8- F9 FA FB
08BB- FC FD FE
08BE- FF 2830 TABLE3 .HS F9FAFBFCFDFEFF
08BF- F9 FA FB
08C2- FC FD FE

stack.

Stealing Control Of The Output I 69

08CS- FE 2a40 .HS F9FAFBFCFDFEFE
08C6- 04 04 04
08C9- 04 04 04
08CC- 04 2aSO .HS 04040404040404

2a60 *
2a70 *
2aao * These are the text messages that are
2a90 * printed out by the program.
2900 *

08CD- DO D2 C9
08DO- CE D4 CS
08D3- D2 AO D4
08D6- Cl C2 C2
08D9- C9 CE C7
08DC- AO C4 D2
08DF- C9 D6 CS
08E2- D2
08E3- 8D 8D
08ES- C2 D9 AO
08E8- CA DS CC
08EB- CS D3 AO
08EE- C8 AE AO
08F1- C7 C9 CC
08F4- C4 CS D2
08F7- 8D
08F8- C3 CF DO
08FB- D9 D2 C9
08FE- C7 C8 D4
0901- AO A8 C3
0904- A9 AO Bl
0907- B9 B8 B2
090A- 8D

2910 TEXT1
2920

2930
2940

29SO
2960

090B- Cl CC CC
090E- AO D2 C9
0911- c7 ca D4
0914- D3 AO D2
0917- CS D3 CS
091A- D2 D6 CS
091D- C4 2970

aD 2980
Cl

091E- 8D aD
0921- D7 ca
0924- D4 AO
0927- CC CF
092A- AO C9
092D- AO D9
0930- DS D2
0933- DO D2
0936- CE D4
0939- D2 AO
093C- Cl D2
093F- AO C9
0942- BF AO
0944- 00

D3
D4
D3
CF
AO
C9
cs
C3
C4
CE

094S- aD 8D
0947- D7 ca c1
094A- D4 AO D4
094D- D9 DO CS
09SO- AO CF C6
09S3- AO DO D2
09S6- C9 CE D4
09S9- CS D2 AO
09SC- C9 CE D4
09SF- CS D2 C6
0962- Cl C3 CS
096S- AO C4 CF
096a- AO D9 CF
096B- DS AO AO
096E- AO C8 Cl
0971- D6 CS BF
HAVE?"

2990
3000
3010 TEXT2

3020

0974- aD 8D 3030
0976- AO AO AO
0979- BC Bl BE

.AS -"PRINTER TABBING DRIVER"

.HS 8DaD

.AS -"BY JULES H. GILDER"

.HS aD

.AS -"COPYRIGHT (C) 19a2"

.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS aDaD8D

.AS -"WHAT SLOT IS YOUR PRINTER CARD IN? "

.HS 00

.HS aDaD

.AS -"WHAT TYPE OF PRINTER INTERFACE DO YOU

.HS 8DaD

70 I Chapter 4

097C- AO DO Cl
097F- D2 Cl CC
09S2- cc cs cc 3040 .AS - " <1> PARALLEL"
09SS- SD 30SO .HS SD
09S6- AO AO AO
09S9- BC B2 BE
09SC- AO D3 CS
09SF- D2 C9 Cl
0992- cc 3060 .AS - " <2> SERIAL"
0993- SD 3070 .HS SD
0994- AO AO AO
0997- BC B3 BE
099A- AO D3 C9
099D- CC CS CE
09AO- D4 D9 DO
09A3- CS 30SO .AS - " <3> SILENTYPE"
09A4- SD SD 3090 .HS SDSD
09A6- CS CE D4
09A9- CS D2 AO
09AC- C3 CS CF
09AF- C9 C3 CS
09B2- BA AO 3100 .AS -"ENTER CHOICE : "
09B4- 00 3110 .HS 00

Finally, after the program has been properly configured, it is moved from its
current location down in memory to page three, where it is designed to run (lines
2070 to 2200) . After the move is made, control is returned to the calling program or
mode via the RTS instruction in the MOVE routine .

The actual tabbing routine starts at line 2340 and jumps to a monitor routine that
simulates the PR# <slot> command . Then a carriage return is sent to the printer
to activate it (line 2360) . After that, the output hooks are changed so that they point
to the routine inside this program that permits the extended tabbing (lines 2380 to
2460) . The routine that allows the extended tabbing starts at line 2560 and does so
by allowing CH, the location that stores the horizontal position on the screen , to
hold a number greater than 40. This number is picked up from the location that
holds the column count for the printer. In the process, whatever is in the accumula
tor is temporarily stored on the stack .

To use the PRINTER TABBING DRIVER, Bl.DAD the program and then type
CALL 2048. The program will ask you a few questions. After you have answered
them, the program will end and return control to the immediate mode . This is a
sign that the program has completed the initialization phase, and is ready to use . To
do this , simply use the command CALL 768 instead of PR# <slot> any time you
want to use the printer. The printer can still be turned off by typing PR#O.

With the growing popularity of lowercase adapters for the Apple computer,
more and more programmers are writing programs that use lowercase text. While
this can be helpful and even make programs appear more attractive, there is a big
problem for people who don't have lowercase adapters and still want to run those
programs. Because of the way that lowercase letters are implemented on the Apple
computer, if they are displayed on a computer without a lowercase adapter, the
lowercase text will appear like an unrelated mess of numbers and symbols.

Getting rid of lowercase letters the easy way
One way of avoiding the problem is to write programs in uppercase text only.

Stealing Control Of The Output I 71

While this is certainly possible, it does mean that you can't take advantage of the
lowercase adapter in machines that have it. A better way around the problem is to
use the LOWERCASE LETTER FILTER program. This program is a short rou
tine that steals control away from the output by replacing the output hooks (lines
1320 to 1400), and then tests each character that is to be printed to see if it is a
lowercase letter. If it is, the letter is converted to it's uppercase equivalent and then
printed.

The actual filtering routine, that handles the character checking and conversion
starts on line 1480. Lowercase letters on the Apple fall in the ASCII code range of
$EI to $FA (a to z). Line 1480 checks to see if the letter to be printed is less than

0036-
0300-
03EA
FDFO-

0300- A9 13
0302- 85 36
0304- A9 03
0306- 85 37
0308- AD DO
030B- C9 4C
030D- DO 03
030F- 20 EA
0312- 60

C9 El
90 06
C9 FB
BO 02
29 DF

1000 *************************************
1010 *** ***
1020 *** LOWERCASE LETTER FILTER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *
1150 *

.OR $300

1160 * EQUATES
1170 *
1180 CSWL
1190 WARMDOS
1200 CONNECT
1210 COUTl
1220 *
1230 *

.EQ $36

.EQ $3DO

.EQ $3EA

.EQ $FDFO

1240 * This section of code sets up the
1250 * output hooks at $36 and $37 so that
1260 * any characters that are being output
1270 * by the computer will first pass
1280 * through this subroutine. Also, a
1290 * test is made to see if DOS is present
1300 * or not.
1310 *
1320
1330
1340
1350

03 1360
1370
1380

03 1390
1400 NODOS
1410 *
1420 *

LDA #START
STA CSWL
LDA /START
STA CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get START low
byte & save it.
Get START high
byte & save it
See if DOS is
present.
It isn't, return.
Connect to DOS

1430 * This is the actual start of the
1440 * filter program. If a character to be
1450 * printed is lowercase, it is converted
1460 * to uppercase and then printed.
1470 *
1480 START
1490
1500
1510

CMP #$El
BCC PRINTIT
CMP #$FB
BCS PRINTIT
AND #$DF

Is it lowercase?
No, use it.
Is it lowercase?
No, use it.

0313-
0315-
0317-
0319-
031B-
031D- 4C FO FD

1520
1530 PRINTIT JMP COUTl

Yes, convert to uppercase.
Print the character.

l

72 I Chapter 4

$EI if it is, it's printed , if not it's checked to see if it is equal to or greater than $FB.
If so, it falls outside of the range defined for lowercase letters and is once again
printed . However, if it falls within the specified range, the ASCII value of the
character to be printed , which is in the accumulator, is ANDed with the value $DF,
to convert it to an uppercase letter (line 1520) and the character is then printed (line
1530).

Because this routine is so short, it is an ideal way to write dual function pro
grams. Your original program can be written with lowercase text and when the user
runs the program he can be asked if a lowercase adapter is being used. If the answer
is no, all that has to be done is a CALL 768, and then all text will appear as
uppercase.

Looking at those invisible control characters
Did you ever save a program out to disk and accidentally hit two keys at the same

time while entering the program name? If you did, and didn't catch your error,
chances are that you wound up with a file on your disk that you couldn't load or
delete. Or maybe you bought a commercial piece of software and there are some
invisible files on the disk which you can't access in the direct mode.

Wouldn't it be nice if you could somehow get to those files? You can. In both
cases, chances are that there are control characters imbedded in the program name.
Sometimes, hitting two keys together results in a control character being gener
ated. And frequently, programmers will imbed backspaces or other control charac
ters in a file name to make it either invisible or inaccessible. Now, with this simple
little program, you can determine immediately if any control characters have been
used, because they will displayed in inverse video whenever they occur.

The program first steals control away from the normal output routines (lines
1320 to 1400) and redirects it to the program that starts in line 1530. At line 1530,
the program checks to see if a carriage return has been entered. If the character is
not a carriage return , the program branches to a subroutine that checks to see if any
other control characters were entered (line 1540). If it is a carriage return, the
accumulator is saved on the stack and the program does a subroutine jump to the
routine that checks for control characters (line 1560) and prints out the inverse
letter instead . On returning from the subroutine, the $8D that was stored on the
stack is retrieved and printed out (lines 1570 and 1580).

The routine that checks for the presence of a control character starts in line 1680.
If the character is a control character, it will be in the range of $80 to $9F. If it's not,
the character is simply printed out, otherwise, the character is exclusively ORed
with $80 to convert it to the $0 to $1F range (which is the range for inverse
characters) and is then printed out.

This program will display all control characters, including the carriage return ,
which is displayed as an inverse M. If you wish to turn off the ability to display the
control-M replace the $1F in location $319 with a $12. This can be done from
BASIC by typing POKE 793,18. To restore the control-M feature place $1F in $319

•

Stealing Control Of The Output I 73

or POKE 793,31. What this poke does is change the JSR in line 1560 from the
routine that checks for control characters to an RTS instruction (e.g. nothing is
done) .

0036-
03DO-
03EA
FDFO-

0300- A9 13
0302- 85 36
0304- A9 03
0306- 85 37
0308- AD DO
030B- C9 4C
030D- DO 03
030F- 20 EA
0312- 60

1000 *************************************
1010 *** ***
1020 *** SHOW CONTROL CHARACTERS ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *
1150 *

.OR $300

1160 * EQUATES
1170 *
1180 CSWL
1190 WARMDOS
1200 CONNECT
1210 COUTl
1220 *
1230 *

.EQ $36

.EQ $3DO

. EQ $3EA

.EQ $FDFO

1240 * This section of code sets up the
1250 * output hooks at $36 and $37 so that
1260 * any characters that are being output
1270 * by the computer will first pass
1280 * through this subroutine. Also, a
1290 * test is made to see if DOS is present
1300 * or not .
1310 *
1320
1330
1340
1350

03 1360
1370
1380

03 1390
1400 NODOS
1410 *
1420 *

LDA #START
STA CSWL
LDA /START
STA CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get START low
byte & save it.
Get START high
byte & save it.
See if DOS is
present.
It isn't, return.
Connect to DOS

1430 * This is the actual start of the
1440 * control character display program.
1450 * Here a check is made to see if the
1460 * character is a Control-M (carriage
1470 *return). If it is, an inverse Mis
1480 * printed followed .. by a carriage
1490 * return. Otherwise control is passed
1500 * to a routine that checks to see if
1510 * the character is a control character.
1520 *
1530 START
1540

CMP #$8D
BNE CHKCTRL
PHA

Is it Cntrl-M? 0313- C9 8D
0315- DO 08
0317- 48
0318- 20
031B- 68
031C- 4C

lF 03
1550
1560
1570
1580
1590 *

JSR CHKCTRL
PLA

No, inverse it.
Yes, save it.
To inverse.
Restore it.

29 03 JMP PRINTIT Print a carriage return.

1600 *
1610 * Here a check is made to see if the
1620 * character in the accumulator is a
1630 * control character. If it's not, it
1640 * is printed as is. If it is, the
1650 * character is converted to inverse and
1660 * then printed.
1670 *

7 4 I Chapter 4

031F- C9 80 1680 CHKCTRL CMP #$80
0321- 90 06 1690 BCC PRINTIT
0323- C9 9F 1700 CMP #$9F
0325- BO 02 1710 BCS PRINTIT
0327- 49 80 1720 EOR #$80
0329- 4C FO FD 1730 PRINTIT JMP COUT1

See if the accumulator
contains a
control character.
No, print it.
Yes, inverse it.
Print character.

Black-on-white video with no hardware modifications
The Apple computer as it is delivered from the manufacturer normally displays

text as white characters on a black background. Some people like to read black text
on a white background however. To do this, they have developed a fairly simple
hardware modification. But hardware changes are not necessary. By simply using a
short machine language routine, called SCREEN REVERSER, you can imple
ment this black-on-white feature on any Apple with no hardware modifications.

Once again, to implement this feature we have to steal control away from the
normal output routines and direct it to our program (lines 1330 to 1410) . The output
is redirected to line 1800 where the program checks to see if the character to be
printed is an alphanumeric character. If it's not, the whole screen is reversed (line
1810). If it is, the character is converted to an inverse character by ANDing it with
the value $3F. It and the value in the Y-register are then saved on the stack and the
routine that reverses the entire screen is set up so that only the last line on the screen
is reversed (lines 1870 and 1880). Then the program branches to line 1560 which is
in the middle of the screen reversing routine.

The screen reversing routine starts on line 1500, where the character that is
currently in the accumulator is stored on the stack along with the Y-register (lines
1500 to 1520). Next, the Y-register is set equal to zero and the low-order byte of
POINTER is set equal to zero (lines 1530 and 1540). Then the high-order byte of
POINTER is set to 4 so that POINTER and POINTER +1 contain the address $400,
which is the start of the screen storage area (lines 1550 and 1560).

The screen is reversed by using POINTER to point to the next character to be
picked up off the screen and inverted. The character is retrieved from the screen in
line 1570 and converted to an inverse character in line 1580 where it is ANDed with
$3F. Then, the character is placed back on the screen in its original position (line
1590) and the Y-register is incremented so that the next character can be retrieved.
This process continues until 256 characters have been converted.

After 256 characters, the high byte of POINTER is incremented by one (line
1620) . After its incremented, a check is made to see ifthe end of the video screen
has been reached (lines 1630 and 1640). If not, the next character is retrieved and
reversed (line 1650). Otherwise, the contents of the Y-register and accumulator
before the routine was entered are retrieved from the stack and restored (lines 1660
to 1680). Finally, the character in the accumulator is output (line 1690).

Because of the relative jump in line 1890, the program is relocatable. This means
that although this program was assembled to run at $300, it can be moved anywhere
in memory and run. The only change required is the address that is stored in the
output hooks (lines 1330 and 1340).

Stealing Control Of The Output I 75

1000 *************************************
1010 *** ***
1020 *** SCREEN REVERSER ***
1030 *** ***
1040 *** COPYRIGHT (C) 19B2 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
lOBO *************************************
1090 *
1100 *
1110 *
1120 .OR $300
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *

OOlB- llBO POINTER .EQ $1B
0036- 1190 CSWL . EQ $36
03DO- 1200 WARMDOS .EQ $3DO
03EA- 1210 CONNECT .EQ $3EA
FDFO- 1220 COUTl .EQ $FDFO

1230 *
1240 *
1250 * This section of code sets up the
1260 * output hooks at $36 and $37 so that
1270 * any characters that are being output
12BO * by the computer will first pass
1290 * through this subroutine. Also, a
1300 * test is made to see if DOS is present
1310 * or not.
1320 *

0300- A9 35 1330 LDA #START Get START addr
0302- AO 03 1340 LDY /START and store it
0304- BS 36 1350 STA CSWL in output
0306- B4 37 1360 STY CSWL+l hooks.
030B- AD DO 03 1370 LDA WARMDOS See is DOS is
030B- C9 4C 13BO CMP #$4C present.
030D- DO 03 1J90 BNE NODOS No, set hooks.
030F- 20 EA 03 1400 JSR CONNECT Connect to DOS
0312- 60 1410 NODOS RTS

1420 *
1430 *
1440 * This is a routine that picks up every
1450 * character on the screen, converts it
1460 * to an inverse character by ANDing
1470 * with #$3F and puts it back on the
14BO * screen where it came from.
1490 *

0313- 4B 1500 REVERSE PHA Save the
0314- 9B 1510 TYA accumulator
0315- 4B 1520 PHA and ¥-register
0316- AO 00 1530 LDY #$0 Set to start
031B- B4 lB 1540 STY POINTER of video
031A- A9 04 1550 LDA #$4 display.
031C- BS 19 1560 LOOPl STA POINTER+l
031E- Bl lB 1570 LOOP2 LDA (POINTER),¥ Get character.
0320- 29 3F lSBO AND #$3F Inverse it.
0322- 91 lB 1590 STA (POINTER),¥ Put it back.
0324- CB 1600 INY Increment character count.
0325- DO F7 1610 BNE LOOP2 Done a page?
0327- E6 19 1620 INC POINTER+l Yes increment page.
0329- A9 OB 1630 LDA #$B All video
032B- CS 19 1640 CMP POINTER+! inversed?
032D- DO EF 1650 BNE LOOP2 No, do more.
032F- 6B 1660 PLA Yes restore
0330- AB 1670 TAY ¥-register and
0331- 6B 16BO PLA accumulator.
0332- 4C FO FD 1690 JMP COUTl Output character.

1700 *
1710 *
1720 * This is where characters to be
1730 * outputted by the computer go to first.

76 I Chapter 4

0335- C9 AO
0337- 90 DA
0339- 29 3F
033B- 48
033C- 98
0330- 48
033E- AO DO
0340- A9 07
0342- BS
0343- 50 07

1740 * Here a check is made to see if an
1750 * alphanumeric character is being sent.
1760 * If so, it is inversed and printed and
1770 * only the last line is reversed. If
1780 * not, the whole screen is reversed.
1790 *
1800 START
1810
1820
1830 SAVEAY
1840
1850
1860
1870
1880
1890

CMP #$AO
BCC REVERSE
AND #$3F
PHA
TYA
PHA
LOY #$00
LOA #$7
CLV
BVC LOOP1

Is it alphanumeric?
No, reverse whole screen .
Yes, reverse
and save it
and Y-register

Set to reverse
the last line on
the video screen.

Format your text into pages
When I first got my Apple computer and was writing BASIC programs, I always

wished that there was a way that I could print out the program listings as individual
pages instead of as one continuous listing. Breaking it down into pages makes it
easy to organize in a folder or looseleaf binder.

Eventually, some printer manufacturers realized that programmers wanted this
capability and built it into their printers. But there are still many printers available
without this feature, so here is a short machine language program that will allow
you to format any kind of printed text into pages of any length with any number of
lines. The program is set up to print 60 lines on a page, and the page length is set to
66 lines per page. In addition, the program can be set to allow for a pause after each
page is printed, which is the default condition. But by changing one byte, this
feature can be eliminated and printing will complete automatically.

The program starts by initializing the carriage return, or line, counter to $FF,
and then sets up the output hooks so that they point to the start of the line counting
program (lines 1340 to 1440). The first thing that the new output routine does when
it is hooked in is to print the character that is currently in the accumulator (line
1540). Since the printing process is non-destructive, the character is still in the
accumulator when the program returns from the printing operation. Thus, it can be
checked to see if the character that was printed was a carriage return (line 1550). If
it wasn't, the program executes an RTS instruction and returns to get the next
character (line 1560). If it was, the line count (COUNT) is incremented by one (line
1570) and a check is made to see if 60 lines were printed yet (lines 1580 and 1590).
If not, the program returns to get the next character (line 1600).

If at least 60 lines have already been printed, the program checks to see if 66
lines have been printed (lines 1610 and 1620). When 66 lines have been printed, the
program branches to line 1670 where the line count is reset to zero (line 1630), and
then falls into a routine (line 1760) that allows the program to pause after each page
is printed. This is done by loading the accumulator with a $1 (line 1770) and then
checking to see ifthe value in the accumulator is zero (line 1780). Since it isn't, the
program then reads the keyboard within a loop until a key is pressed (lines 1790 and
1800). Once a key is pressed, the strobe is cleared (line 1810) and the program
returns to get the next character (line 1820).

Stealing Control Of The Output I 77

By changing the value in location $337 from a one to a zero, the pause after each
page is printed can be eliminated. This can be done from the monitor or by typing
POKE 823,0 from BASIC. The pause feature can be restored by typing POKE
823,1.

If at least 60 lines have been printed and less than 66 lines have been printed, the
program proceeds to print out carriage returns until 66 lines have been printed.
This takes place in line 1640 to 1660. A relative jump is used here instead of an
absolute jump so that the program can be moved to and used from any location in
memory.

The number of lines printed per page is set to 60 in line 1590. This can be
changed from BASIC by typing POKE 803,X where X represents the number of
lines you wish printed on each page. The page length, also referred to as form
length, is determined in line 1620. It is set to a default value of 66 lines per page.
This is standard for an 11-inch long page printed at 6 lines per inch. If your page is
of a different length, or you are printing at a different density (maybe 8 lines per
inch) then just multiply the lines per inch that your printer works at by the length of
the paper being used (in inches). To change the page length, change the value that
is stored in location $329 to whatever value you desire. From BASIC, you can
change this value by typing POKE 809,X, where Xis the new page length.

0018-
0036-
0200-
03DO-
03EA
COOO
C010-
C200-
FD8E
FE95-

02FB- A9 01
02FD- 20 95 FE

1000 *************************************
1010 *** ***
1020 *** PAGE FORMATTER ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

.OR $300

1150 * EQUATES
1160 *
1170 COUNT
1180 CSWL
1190 IN
1200 WARMDOS
1210 CONNECT
1220 KYBRD
1230 STROBE
1240 SLOT
1250 CROUT
1255 OUTPORT
1260 *
1270 *

.EQ $18

.EQ $36

. EQ $200

. EQ $3DO

.EQ $3EA

.EQ $COOO

.EQ $C010

.EQ $C200

.EQ $FD8E

.EQ $FE95

1280 * This routine turns on the printer
1285 * in slot 1, initializes the carriage
1290 * return counter and sets the output
1300 * hooks to point to this program, which
1310 * counts the number of carriage returns
1320 * printed and pages the output.
1325 *
1330
1335

LDA #$1
JSR OUTPORT

Set slot 1 for output
and turn it on.

78 I Chapter 4

0300- AO FF
0302- 84 18
0304- A9 17
0306- BS 36
0308- A9 03
030A- BS 37
030C- AD DO 03
030F- C9 4C
0311- DO 03
0313- 20 EA 03
0316- 60

1340
13SO
1360
1370
1380
1390
1400
1410
1420
1430
1440 NODOS
14SO *
1460 *

LDY #$FF
STY COUNT
LDA #START
STA CSWL
LDA /START
STA CSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Initilize carriage return
counter.
Set output
hooks to this
program.

Check to see
if DOS is present
It isn't, return.
Yes it is, connect
to it.

1470 * This is the actual start of the code
1480 * that counts the number of carriage
1490 * returns already sent. If 60 have
lSOO * been sent, then send 6 more carriage
lSlO * returns to get to the top of the next
1S20 * page.
1S30 *

02 C2 1S40 START 0317- 20
031A- C9
031C- DO
031E- E6
0320- AS
0322- C9
0324- DO
0326- AS
0328- C9
032A- FO
032C- 20
032F- BB
0330- SO F4
0332- A9 00
0334- BS 18

SD lSSO
24 1S60
18 1S70
18 1S80
3C 1S90
lC 1600
18 1610 CHKPAGE
42 1620
06 1630
BE FD 1640

16SO
1660
1670 RSTCNT
1680
1690 *
1700 *

JSR SLOT+2
CMP #$8D
BNE RTN
INC COUNT
LDA COUNT
CMP #$3C
BNE RTN
LDA COUNT
CMP #$42
BEQ RSTCNT
JSR CROUT
CLV
BVC
LDA
STA

CHKPAGE
#$0
COUNT

Print character.
Is it a carriage return?
No, get next character.
Yes, add 1 to COUNT

Does COUNT = 60?
No, return.

Does COUNT = 66?
Yes, reset it to zero.
No, print a carriage return.
Relative jump
always taken.
Reset COUNT to
zero.

1710 * This section allows the user to press
1720 * any key to continue printing after
1730 * each page. To eliminate this feature
1740 * change the LDA #$1 to an LDA #$0, or
17SO * eliminate the instruction altogether.

0336- A9
0338- FO
033A- AD
033D- 10
033F- 2C
0342- 60

1760 *
01 1770
08 1780
00 CO 1790 RDKYBRD
FB 1800
10 co 1810

1820 RTN

LDA #$1
BEQ RTN
LDA KYBRD
BPL RDKYBRD
BIT STROBE
RTS

Read keyboard until
a key is pressed.
Clear the strobe.
Return to caller.

Send your output to the disk instead of the printer
Sometimes, it is desirable to send the output that would normally be printed, to a

disk as a text file for printing at a later time, to be fixed up with an editor or to be
formatted with a word processor. Writing a text file is very easy from BASIC, all
you do is open the file, issue the write command and from then on, until the file is
closed, everything that gets printed out is sent to the text file.

Writing a text file from a machine language program is not quite as simple.
There are two ways it can be done. One is to use the file manager in DOS, but that
requires intimate knowledge of how the file manager works and can be somewhat
confusing. An easier method is to fool the computer into thinking that an Applesoft
program is running, when a machine language program is really running, and then
issuing the OPEN and WRITE commands from the machine language program.

0006-
0008-
0009-
0033-
0036-
007 S-
03EA
AAB6-
FCS8-
FDED
FDFO-

02EE- 20 SS FC
02F1- AS 33
02F3- SS 08
02FS- A9 06
02F7- 8S 33
02F9- AD B6 AA
02FC- SS 09
02FE- A9 40
0300- SD B6 AA
0303- SS 76
030S- A9 4S
0307- AO 03
0309- 20 34 03
030C- A9 18
030E- AO 03
0310- BS 36
0312- 84 37
0314- 20 EA 03
0317- 60

0318- C9 00
031A- FO 03
031C- 4C FO FD
031F- A9 B9
0321- AO 03
0323- 20 34 03
0326- AS 08

Stealing Control Of The Output I 79

1000 *************************************
1010 *** ***
1020 *** PRINT TO DISK SPOOLER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130
1140 *
11SO *

.OR $2EE

1160 * EQUATES
1170 *
1180 TXTPTR
1190 SAVPRM
1200 SAVLANG
1210 PROMPT
1220 CSWL
1230 CURLIN
1240 CONNECT
12SO LANG
1260 HOME
1270 COUT
1280 COUTl
1290 *
1300 *

.EQ $6

.EQ $8

.EQ $9

.EQ $33

.EQ $36

.EQ $7S

.EQ $3EA

.EQ $AAB6

.EQ $FCS8

.EQ $FDED

.EQ $FDFO

1310 * This section of the program fools the
1320 * computer into thinking that Applesoft
1330 * is running instead of a machine
1340 * language program. It then opens a
13SO * file called TEXT FILE and sets it up
1360 * to be written to. Then the output
1370 * hooks are set up so that they point
1380 * to a routine that checks for a 0
1390 * which is an end-of-file marker.
1400 *
1410
1420
1430
1440
14SO
1460
1470
1480
1490
1SOO
1S10
1S20
1S30
1S40
1SSO
1S60
1S70
1S80
1S90
1600 *
1610 *

JSR HOME
LDA PROMPT
STA SAVPRM
LDA #$6
STA PROMPT
LDA LANG
STA SAVLANG
LDA #$40
STA LANG
STA CURLIN+!
LDA #TEXT1
LDY /TEXTl
JSR MSGPRT
LDA #START
LDY /START
STA CSWL
STY CSWL+1
JSR CONNECT
RTS

Clear screen.
Save current
prompt.
Change prompt
to run value.
Save current
language flag.
Tell computer
APPLESOFT is running.
Show run mode.
Print title and
open TEXT FILE

Point to new
output routine

Connect to DOS

1620 * This routine checks for end-of-file.
1630 * If it is found all values changed on
1640 * entry are restored.
16SO *
1660 START
1670
1680
1690 DONE
1700
1710
1720

CMP #$0
BEQ DONE
JMP COUT1
LDA #TEXT2
LDY /TEXT2
JSR MSGPRT
LDA SAVPRM

End of file?
Yes, end up.
No, print character.
Close TEXT
FILE.

Restore prompt.

80 I Chapter 4

032B-
032A-
032C-
032F-
0331 -
0333-

BS 33
AS 09
BD B6
A9 FF
BS 76
60

1730
1740

AA 17SO
1760
1770
17BO
1790 *
lBOO *

STA
LDA
STA
LDA
STA
RTS

PROMPT
SAVLANG
LANG
#$FF
CURLIN+l

Restore
language
Indicate
immediate
Return.

flag.

mode

lBlO * This is the message printing routine.

0334-
0336-
033B-
033A-
033C-
033E-
0341-
0342-
0344-

1B20 *
BS 06 1B30 MSGPRT
B4 07 1B40
AO 00 lBSO
Bl 06 1B60 LOOP
FO 06 1B70
20 ED FD lBBO
CB 1B90
DO F6 1900
60 1910 ENDPRT

1920 *
1930 *

STA
STY
LDY
LDA
BEQ
JSR
INY
BNE
RTS

TXTPTR
TXTPTR+l
#$0
(TXTPTR), Y
ENDPRT
GOUT

LOOP

1940 * These are the various text mesages
19SO * printed out by this program.

034S- DO D2 C9
034B- CE D4 AO
034B- D4 CF AO
034E- C4 C9 D3
03Sl- CB AO D3
03S4- DO CF CF

1960 *

03S7- CC CS D2 1970 TEXTl
03SA- BD BD 19BO
03SC- C2 D9 AO
03SF- CA DS CC
0362- CS D3 AO
036S- CB AE AO
036B- C7 C9 CC
036B- C4 CS D2 1990
036E- BD 2000
036F- C3 CF DO
0372- D9 D2 C9
037S- C7 CB D4
037B- AO AB C3
037B- A9 AO Bl
037E- B9 BB B2 2010
03Bl- BD 2020
03B2- Cl CC CC
03BS- AO D2 C9
03BB- C7 CB D4
03BB- D3 AO D2
03BE- CS D3 CS
0391- D2 D6 CS
0394- C4
039S- BD BD BD
039B- BD 8"4
039A- CF DO CS
039D- CE D4 CS
03AO- DB D4 AO
03A3- C6 C9 CC
03A6- CS
03A7- BD B4
03A9- D7 D2 C9
03AC- D4 CS D4
03AF- CS DB D4
03B2- AO C6 C9
03BS- CC CS
03B7- BD 00
03B9- BD B4
03BB- C3 CC CF
03BE- D3 CS AO
03Cl- D4 CS DB
03C4- D4 AO C6

2030

2040

20SO
2060

2070
20BO
2090 TEXT2

03C7- C9 CC CS 2100
03CA- BD 00 2110

.AS -"PRINT TO DISK SPOOLER"

.HS BDBD

.AS -"BY JULES H. GILDER"

. HS BD

.AS -"COPYRIGHT (C) 19B2"

.HS BD

.AS -"ALL RIGHTS RESERVED"

.HS BDBDBDBDB4

.AS -"OPENTEXT FILE"

. HS BDB4

.AS -"WRITETEXT FILE"

.HS BDOO

.HS BDB4

.AS -"CLOSE TEXT FILE"
.HS BDOO

Stealing Control Of The Output I 81

This is the approach used in the program PRINT TO DISK SPOOLER.

The program starts by clearing the screen (line 1410) in preparation for writing
the title and copyright notice out and then saves the current value of certain loca
tions normally associated with Applesoft. In lines 1420 to 1450, the current value
of PROMPT is saved and replaced by the value that is normally found when an
Applesoft program is running. Next, the data that tells the Apple which language is
active, is saved and replaced by information that tells it that Applesoft is running
(lines 1460 to 1490). Now, if Applesoft is active, it must be operating on a particu
lar line. So, in line 1500, we give the computer a phony line number so it will be
convinced that an Applesoft program is running.

With all the details that fool it into thinking that an Applesoft program is running
taken care of, the program now goes on to print out the title of the program (lines
1510 to 1530). The next thing that it does is to open a file. The name of the file is
automatically set to TEXT FILE in line 2050. Since the computer thinks an Apple
soft program is running, to open the file all we have to do is print at least one
carriage return and then a control-D, followed by the phrase OPEN TEXT FILE.
This is done in lines 2040 and 2050. Following that, another carriage return and
control-Dare sent and the WRITE TEXT FILE command is issued.

Before returning control to the caller, the program gets the starting address of
the routine that will automatically close the open file when a zero is encountered.
This address is then placed in the output hooks (lines 1540 to 1580) and the
program returns ready to start writing text to the file. Everything that is printed out
will be stored in the text file as well until an ASCII zero is sent either by the
machine language program or from BASIC by sending CHR$(0).

The routine that checks for the zero starts at line 1660. If the character is not a
zero, it is printed out (line 1680). But if it is a zero, a carriage return and a control
D are sent, followed by the words CLOSE TEXT FILE and another carriage
return. This closes the file and prevents anything further from being written to the
file. After that, the program restores the prompt and the language flag that were
stored at the beginning of the program (lines 1720 to 1750) and stores an $FF in the
high-order byte of the current line number storage location to indicate that a
program is not running and that the computer is in the immediate mode (lines 1760
and 1770). Control is then returned to the calling program in line 1780.

To use this subroutine, have your main machine language program do a JSR
$2EE, or from BASIC do a CALL 750. All output will then go to a text file. To stop
output to the file, print out an ASCII 0 or CHR$(0).

Chapter 5

STEALING CONTROL OF THE INPUT

In the last chapter we saw how it was possible to steal control away from the
Apple's normal output routines and direct the computer to send characters destined
to be printed to our programs instead. It's possible to do the same thing with
characters that are being input to the Apple. Frequently, it is desirable to replace
the routine that manages the entry of data from the keyboard with another program
that either fetches the data from some other device (such as a disk drive) or first
processes the data being entered.

When writing a replacement input routine, there are several things you must
bear in mind. If the information being entered is to be echoed on the screen , the
contents of the accumulator must be stored at (BASL) , Y - where BASL equals
$28. If the new input routine prevents the ESCape key and the Control-U key from
being entered, then the Y-register need not be saved. If it doesn't, however, then the
Y-register must remain unaltered. This can be accomplished by saving the register
when entering the routine and restoring it when leaving . In all cases, the X-register
must remain unaltered, so if it is needed, the same storing and restoring procedure
will be necessary.

82

Stealing Control Of The Input I 83

The basic read-a-key routine is located in the Apple monitor ROM at location
$FDOC. Here the monitor picks up a character off the screen, converts it to its
flashing equivalent, stores it back on the screen (this is the way we get the flashing
box cursor). Then the program does an indirect jump through KSWL to the routine
that handles the inputting of data. In an Apple system with no DOS, the input hooks
are set for $FD1B, which is the location immediately following the indirect jump.
In a system with DOS, it is set for $9E81, which is the routine that checks for DOS
commands.

Customize your cursor
To illustrate how to steal control away from the input, the first program in this

chapter will show you how to replace the blinking white square that is normally
used as a cursor, with any other character you desire. In the example given, an
underline character is used.

The program starts off in lines 1320 to 1400 by stealing control from the input in
much the same way that we learned to steal control from the output. The big
difference here, comes in lines 1340 and 1350, where instead of using locations
CSWL and CSWL + 1, we use locations KSWL and KSWL + 1 ($38 and $39)
which are the input hook locations.

The actual replacement routine starts on line 1480 where the character that is
currently in the accumulator is saved temporarily by pushing it on the stack. Next,
the character that is going to be used as the cursor character is loaded into the
accumulator (line 1490) and stored on the screen (line 1500). Finally, the character
that was in the accumulator is restored and the program checks to see if a key has

0028-
0038-
03D0-
03EA
COOO
C010-

1000 *************************************
1010 *** ***
1020 *** CUSTOM CURSOR ***
1030 *** ***
1040 *** COPYRIGHT {C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130
1140 *
1150 *
1160 *

.OR $300

1170 * EQUATES
1180 *
1190 BASL
1200 KSWL
1210 WARMDOS
1220 CONNECT
1230 KEYBD
1240 KBDSTRB
1250 *
1260 *

.EQ $28

.EQ $38

.EQ $3DO

.EQ $3EA

.EQ $COOO

.EQ $C010

1270 * This section steals control of the
1280 * input and passes all characters to

84 I Chapter 5

1290 * be output to the routine beginning
1300 *with START.

0300- A9 13
0302- AO 03
0304- 85 38
0306- 84 39
0308- AD DO 03
030B- C9 4C
030D- DO 03
030F- 20 EA 03
0312- 60

1310 *
1320
1330
1340
1350
1360
1370
1380
1390
1400 NODOS
1410 *
1420 *

LDA #START
LDY /START
STA KSWL
STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get the address of the
start of the program.
Store it in the
input hooks.
Is DOS present?

No.
Yes, connect to DOS.
Return.

1430 * This routine replaces the normal
1440 * flashing cursor with whatever

0313- 48
0314- AD 28
0317- 91 28
0319- 68
031A- 2C 00
0310- 10 FB
031F- 91 28
0321- AD 00
0324- 2C 10
0327- 60

0328- 9F

1450 * cursor character you want. Here, an
1460 * underscore is used as the cursor.
1470 *
1480 START

03 1490
1500
1510

CO 1520 GETKEY
1530
1540

co 1550
co 1560

1570
1580 *
1590 *

PHA
LDA CURSOR
STA (BASL l , Y
PLA
BIT KEYBD
BPL GETKEY
STA (BASL), Y
LDA KEYBD
BIT KBDSTRB
RTS

Save the accumulator.
Get the cursor character.
Put it on the screen.
Restore the accumulator.
Key pressed?
No, keep checking.
Yes, display accumulator.
Get keypress.
Clear keyboard strobe .

1600 * This is where the cursor character is
1610 * stored.
1620 *
1630 CURSOR .HS 9F

been pressed (line 1520). If it hasn't, the program loops back to 1520 and waits until
a key has been pressed (line 1530). Once a key has been pressed, the character that
is in the accumulator is displayed on the screen (line 1540). Next, the hexadecimal
value of the key that was pressed is retrieved and the keyboard strobe is cleared to
prepare the keyboard for the next keypress (lines 1550 to 1560).

The character that is used as the cursor is stored in the location labelled CUR
SOR. Here an underline is used ($9F), but any other character can be used as well.

While the previous program was useful to illustrate how to steal control away
from the input routines, in all honesty I must admit that the application is one of the
less urgently needed programs. A much more useful and practical program is the
SCREEN PRINTER program presented next. By simply pressing two keys, this
program will allow you to print out the text screen exactly as it appears on your
video display, onto a parallel or serial printer.

Dump your screen to a printer
As it is currently set up, this program will run with a parallel printer card in slot

2. This can be changed however by simply changing the value of WARMPRT,
which here is $C202. WARMPRT is the address to which the output hooks are set
after the printer card has been initialized. In order to find out what the value of
WARMPRT is for your printer interface card, simply activate it by doing a
PR#< slot> and while it's active typing:

CALL-151
36.37

Stealing Control Of The Input I 85

If you do this, the computer will respond with two numbers which represent the
low and high bytes respectively of WARMPRT. For a parallel printer in slot 2 we
get:

0036-02 C2

and for a serial printer in slot one we would get:

0036-07 Cl

The Cl and C2 represent slots 1 and 2 respectively. The low-order byte of
WARMPRT will vary with the interface card used. The values presented here are
for interface cards from Apple Computer Inc. Other manufacturer's cards could
have different values. For example, one parallel printer interface card that I have
has a low-order byte of 21 instead of 2.

Getting back to the program, it starts out on line 1400 by retrieving the high
order byte of WARMPRT and ANDs it with $OF (line 1410) to get the slot number
that the printer interface card is in. Once the program knows the slot number
(which is now in the accumulator) it uses that number to simulate a PR# <slot>
using the monitor's OUTPORT routine (line 1420). This turns the printer on.
Next, a set-up string is sent to the printer (lines 1430 to 1480). Thi~ string of
characters consists of Control-I 40N. The reason for sending this to the printer is
that it will turn off the screen any time that the printer is activated. After the printer
has been initialized, it is turned off (lines 1490 and 1500) until it is needed.

Now that the initialization phase has been completed, the program replaces the
input hooks with the address of this program (lines 1600 to 1680). The replacement
input routine starts on line 1740, where the first thing that happens is a subroutine
jump to the monitor's KEYIN routine. Once a character has been entered by fuis
routine, a check is made to see if that character was a Control-P (line 1750).
Control-P was the character chosen as the signal to the program that a dump of the
screen on the printer is wanted. Any other value could be used as well by simply
replacing the $90 in line 1750 with the desired character. If the character was not a
Control-P, the program returns to get the next character. If it was, it branches to the
PRTSCRN routine that starts at line 1830.

The first thing that the PRTSCRN routine does is to save all of the registers
(using the monitor ROM's SAVE routine) so they may be restored before the
program is exited. In addition to that, the current horizontal location of the cursor
is saved so that it too may be restored later on (lines 1840 and 1850). Next, the
printer is turned on through its warm start address by sending it a carriage return
(lines 1860 and 1870). The warm start address is used so that all of the printer
initialization that was done previously will remain in effect. If the cold start ad-

86 I Chapter 5

0024-
0028-
0038-
03DO-
03EA
C202-
FBC1-
FDOC
FD1B
FDED
FE95-
FF3F
FF4A-

1000 *************************************
1010 *** ***
1020 *** SCREEN PRINTER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

.OR $300

1150 * EQUATES
1160 *
1170 CH
1180 BASL
1190 KSWL
1200 WARMDOS
1210 CONNECT
1220 WARMPRT
1230 BASCALC
1240 RDKEY
1250 KEYIN
1260 GOUT
1270 OUTPORT
1280 RESTORE
1290 SAVE
1300 *
1310 *

.EQ $24

. EQ $28

.EQ 138 .EQ 3DO

.EQ 3EA

. EQ C202

. EQ $FBC1

.EQ $FDOC

.EQ $FD1B

.EQ $FDED

.EQ $FE95

.EQ $FF3F

.EQ $FF4A

1320 * Here the printer is initialized by
1330 * doing the equivalent of a PR# <slot>.
1340 * After that, the screen is turned off
1350 * by sending the printer a set-up
1360 * string consisting of Control-I 40N.
1370 * Finally, the printer is turned off by
1380 * doing the equivalent of a PR#O.

dress were used (e.g. $C200), the set-up string would have to be sent to the printer
again. This way it doesn't.

Now that the printer is ready to print without disturbing the screen (we turned it
off remember?) the X-register, and subsequently the accumulator, are loaded with
the number of the first line we want to print. In hexadecimal we want to print lines
$0 to $17 which is 0 to 23 in decimal. The Apple video screen in structured in a
peculiar manner and text that appears continuous on the screen, is not continuous
in memory. To handle this strange layout, a special routine is used to calculate the
smrting address in memory of any particular line. The routine is called BASCALC
and it is located at $FBC 1 in the Apple's monitor ROM. To use it, all you have to do
is place the number of the line you want in the accumulator and then jump to
BASCALC. This is what is done in lines 1890 and 1900. Upon returning from this
subroutine, the starting address in memory of the desired line is found in locations
BASL and BASL + 1 ($28 and $29) on page zero.

Once the program knows where the line starts in memory, it's easy to pick up the
characters off the screen and send them to the printer. The routine starting at line
1910 does just that, and more. Indirect indexed addressing is used in line 1920 to
retrieve a character from the desired line on the screen. Once retrieved, the charac
ter is tested to see if it is a normal white-on-black character. If it's not, $40 is added
to it (line 1950) and it is checked again to see if it's normal. If it's still not normal,

0300- A9 02
0302- 29 OF
0304- 20 95 FE
0307- AO 00
0309- B9 6C 03
030C- FO 06
030E- 20 ED FD
0311- CB
0312- DU F5
0314- A9 00
0316- 20 95 FE

0319- A9 2C
031B- AO 03
031D- 85 38
031F- 84 39
0321- AD DO 03
0324- C9 4C
0326- DO 03
0328- 20 EA 03
032B- 60

032C- 20 1B FD
032F- C9 90
0331- FO 01
0333- 60

1390 *
1400
1410
1420
1430
1440 LOOP
1450
1460
1470
1480
1490 NEXT
1500
1510 *
1520 *

Stealing Control Of The Input I 87

LDA #WARMPRT Get printer
AND #$OF slot number.
JSR OUTPORT Do PR#<slot>.
LDY #$0 Send printer
LDA TEXT,Y the set-up
BEQ NEXT string.
JSR GOUT
INY
BNE LOOP
LDA #$0
JSR OUTPORT

Do a PR#O.

1530 * This routine transfers the input
1540 * hooks ($38 and $39) from the keyboard
1550 * to this program, where a check can be
1560 * made to determine if a Control-P has
1570 * been pressed. If so, the screen is
1580 * then printed out.
1590 *
1600
1610
1620
1630
1640
1650
1660
1670
1680 NODOS
1690 *
1700 *

LDA #START
LDY /START
STA KSWL
STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get program's
start address.
Store in input
hooks.
Check to see
if DOS is present
No, return.
Yes, connect
to it.

1710 * Here the keyboard is checked to see
1720 * if a Control-P has been entered.
1730 *
1740 START
1750
1760
1770

JSR KEYIN
CMP #$90
BEQ PRTSCRN
RTS

Get a key.
Is it Ctrl-P?
Yes print screen.
No, return.

another $40 is added to it. By this point all characters must be normal. Characters
that appear on the screen in inverse video fall in the $0 to $3F range and thus must
pass through the CHKNORM loop twice to get $80 added on to their value, while
flashing characters, which are in the $40 to $7F range when displayed on the
screen, only have to pass through this loop once.

After a character has been converted to normal it is printed in line 1970. Then the
Y-register, which is used to point to the particular character on the line that is being
accessed, is incremented in preparation for retrieving the next character. Before
doing that, a check is made to see if we've already picked up the last character on
the line (line 1990). If we have not, the next character is retrieved (line 2000). But if
we have, a carriage return is sent to the printer, and the X-register, which is used as
the line counter, is incremented by one (lines 2010 to 2030). Before continuing, a
check is made to see if we have just finished printing the last line on the screen (line
2040). If we have not, the program jumps back to line 1890 where it gets the
address in memory of the next line and continues printing it out. If we've finished
printing out the last line on the screen, the horizontal cursor position is retrieved as
are the various registers (lines 2060 to 2080). Finally, the program does an absolute
jump to the monitor's RDKEY subroutine and waits for the next key to be pressed
(line 2090).

88 I Chapter 5

0334- 20 4A FF
0337- AS 24
0339- 4S
033A- A9 SD
033C- 20 02 C2
033F- A2 00
0341- SA
0342- 20 Cl FB
0345- AO 00
0347- Bl 2S
0349- C9 AO
034B- BO 04
034D- 69 40
034F- DO FS
0351'- 20 02 C2
0354- cs
0355- co 2S
0357- DO EE
0359- A9 SD
035B- 20 02 C2
035E- ES
035F- EO lS
0361- DO DE
0363- 6S
0364- SS 24
0366- 20 3F FF
0369- 4C OC FD

036C- S9
036D- B4 BO CE
0370- SD 00

17SO *
1790 *
lSOO * A Control-P has been entered so now
lSlO * it's time to print the screen out.
1S20 *
1S30 PRTSCRN
1S40
1S50
1S60
1S70
lSSO
1S90 GETLINE
1900
1910
1920 GETCHAR
1930 CHKNORM
1940
1950
1960
1970 PRINTIT
19SO
1990
2000
2010
2020
2030
2040
2050
2060
2070
20SO
2090
2100 *
2110 *

JSR SAVE
LDA CH
PHA
LDA #$SD
JSR WARMPRT
LDX #$0
TXA
JSR BASCALC
LDY #$0
LDA (BASL) , Y
CMP #$AO
BCS PRINTIT
ADC #$40
BNE CHKNORM
JSR WARMPRT
INY
CPY #$2S
BNE GETCHAR
LDA #$SD
JSR WARMPRT
INX
CPX #$1S
BNE GETLINE
PLA
STA CH
JSR RESTORE
JMP RDKEY

Save registers.
Save cursor's
horizontal position.
Send printer a
carriage return.
Set up for 1st
screen line.
Calculate video line.
Init char counter.
Get character
Is it norma l?
Yes , print it.
No, adjust it.
Normal now?
Yes, print it.
Increment char counter.
40 characters yet?
No, get more.
Yes, print a
carriage return.
Increment line counter.
24 lines yet?
No, get more.
Yes, restore
horiz. cursor.
Restore registers.
Get a keypress.

2120 * This is the printer set-up string.
2130 * It consists of a Control-I 40N and is
2140 * followed by a carriage return.
2150 *
2160 TEXT
2170
21SO

.HS S9

.AS -"40N"

.HS SDOO

Add a numeric key pad for free

Business and accounting software often require that the user enter large amounts
of numerical data. This can be very inconvenient with the conventional Apple
keyboard, because the numbers are spread across the top row of the keyboard. To
solve this problem, many hardware manufacturers have developed accessory key
pads that plug into the Apple and provide the user with a calculator-like layout of
numerical keys. These key pads range in price from $80 to $300.

By now, you are probably aware that the Apple computer is a very versatile
machine and that most problems one encounters can be solved either in hardware
or in software. The vendors of accessory key pads have solved the problem using
hardware, at considerable cost. But here, you have a solution to the problem using
software, and it's free.

Using the NUMERIC KEY PAD program, you'll be able to treat a section of the
standard Apple keyboard as a numeric key pad. The software key pad uses the 7, 8
and 9 of the Apple keyboard as its top row. The three keys underneath these, the U,
I and 0 represent 4, 5 and 6 respectively, while the three keys under these - J, K
and L - represent 1, 2 and 3 respectively. In addition to these, a few other keys

Stealing Control Of The Input I 89

have been translated. The M key represents a 0, the semicolon represents a plus
sign (+) and the P key represents the multiplication (x) sign. These last two
assignments mean that all mathematical operators are now available as single key,
unshifted entries. In addition to these keys, the Apple still recognizes the regular
number and mathematical operator keys.

Once the program is activated, it can be turned on by entering a Control-Kand
turned off by entering a Control-Q. This toggling on and off requires the use of a
flag byte to determine what mode is currently active. The program starts off in line
1340 by setting the flag byte to a nonzero value to indicate that the key pad is active.
After that, control is taken away from the normal input routine and given to the
input routine of this program (lines 1360 to 1440).

The input routine for this program starts on line 1520, where a subroutine jump
is made to one of the monitor ROM's input routines KEYIN. After this routine gets
a character from the keyboard and puts it into the accumulator, it returns to our
program where several tests are performed. The first one is a test to see if the
character that was entered was a Control-K (line 1530). If it was a Control-K, the
contents of the accumulator (which is $8B, the ASCII code for a Control-K) is
stored in FLAG (line 1550) to indicate that the key pad is active. Having done this,
the program then jumps to the monitor to read the keyboard once more (line 1560).
Ifit was not a Control-K, another test is made to see ifthe character entered was a
Control-Q (line 1570). Ifit was, the program jumps to a subroutine called TURN
OFF (line 1820), which stores a zero in FLAG, effectively turning off the key pad.

90 I Chapter 5

This routine ends by jumping to a routine in the monitor to read the keyboard for
the next key pressed (line 1840).

If neither a Control-Kor Control-Qare entered, the program proceeds to line
1590 where FLAG is checked to determine whether the key pad is supposed to be
active or not. If the value stored in FLAG is zero, the key pad is not active and an
RTS instruction is executed. This causes the character that was entered at the
keyboard, and which currently is in the accumulator, to pass through the numeric
key pad program unaffected. However, ifthe value of FLAG is not zero, the key pad
is active and any character that is entered passes through this program and is
checked to see if it is one of the nine characters which have been reassigned.

Each character that is entered when the key pad is active, is checked (line 1620)
against the table of values in line 1920. If no match is made with any of the nine
characters in TABLE 1, the character is allowed to pass through unchanged (line
1670). However, if a match is made (line 1630) the program branches to a routine
called SWITCH at line 1740, which substitutes a character in TABLE 2 for the
current character in the accumulator.

0006-
0008-
0038-
03DO-
03EA
FDOC
FDlB-

0300- A9 8B
0302- 85 08
0304- A9 17
0306- AO 03
0308- 85 38
030A- 84 39
030C- AD DO 03
030F- C9 4C
0311- DO 03
0313- 20 EA 03
0316- 60

1000 *************************************
1010 *** ***
1020 *** NUMERIC KEY PAD ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130
1140 *
1150 *
1160 *

.OR $300

1170 * EQUATES
1180 *
1190 SAVKSWL
1200 FLAG
1210 KSWL
1220 WARMDOS
1230 CONNECT
1240 RDKEY
1250 KEYIN
1260 *
1270 *

. EQ $6

. EQ $8

.EQ $38

.EQ $3DO

. EQ $3EA

.EQ $FDOC

.EQ $FD1B

1280 * This section s t eal s control of the
1290 * input and passes all characters to
1300 * be input t o t he routine beginning
1310 * with START . It a l so sets the keypad
1320 * f l ag so the pad will become active.
1330 *
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440 NODOS

LDA #$8B
STA FLAG
LDA #START
LDY /START
STA KSWL
STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
J SR CONNECT
RTS

Set keypad active
flag.
Ge t the address of the
start of the program.
Store it in t he
input hook s .
Is DOS present ?

No.
Yes, connect to DOS .
Re turn.

0317- 20 1B FD
031A- C9 8B
031C- DO 05
031E- 85 08
0320- 4C OC FD
0323- C9 91
0325- FO 15
0327- A4 08
0329- FO OC
032B- AO 00
032D- D9 43 03
0330- FO 06
0332- C8
0333- co 09
0335- DO F6
0337- 60

0338- B9 4C 03
033B- 60

033C- A9 00
033E- 85 08
0340- 4C OC FD

0343- CF C9 D5
0346- CC CB CA
0349- CD DO BB
034C- B6 BS B4
034F- B3 B2 Bl
0352- BO AA AB

1450 *
1460 *

Stealing Control Of The Input I 91

1470 * This routine replaces the normal
1480 * input routine with this program so
1490 * certain keys on the Apple can be
1500 * interpreted as a numeric key pad.
1510 *
1520 START
1530
1540
1550
1560
1570 NEXT
1580
1590
1600
1610
1620 LOOP!
1630
1640
1650
1660
1670 RETURN
1680 *
1690 *

JSR KEYIN
CMP #$8B
BNE NEXT
STA FLAG
JMP RDKEY
CMP #$91
BEQ TURNOFF
LDY FLAG
BEQ RETURN
LDY #$0
CMP TABLEl,Y
BEQ SWITCH
INY
CPY #$09
BNE LOOP!
RTS

Read the keyboard.
Is it a Cntrl-K?
No, is it Ctrl-Q?
Yes, se t FLAG.
Get next key.
Is it Ctrl-Q?
Yes, turn off keypad .
See is keypad is active.
No , it isn't.
Initialize index.
Find character in table.
Replace with new character.
Increment index.
End of table?
No, chek more .
Return to caller.

1700 * The character has been found in
1710 * TABLE! and therefore a substitute
1720 * character from TABLE2 will r eplace it.
1730 * 1740 SWITCH LDA TABLE2,Y Substitute new character.
1750 RTS
1760 *
1770 *
1780 * This routine restores the FLAG
1790 * byte to zero and turns off the
1800 * keypad interpreter .
1810 *
1820 TURNOFF
1830
1840
1850 *
1860 *

LDA #$0
STA FLAG
JMP RDKEY

Reset key pad flag.

Get next key.

1870 * These are the two character tables .
1880 * TABLE! contains the keyboard equivalents
1890 * and TABLE2 what the new key has been
1900 * defined as .
1910 *

1920 TABLE! .AS -"OIULKJMP;"

1930 TABLE2 .AS _,·'6543210*+"

As you can see, the NUMERIC KEY PAD program is a short one and can easily
reside in the unused portion of page three. This program can be combined with
BASIC programs to simplify the entering of numerical data for such programs.
While the same thing could probably be done in BASIC, the routine would be
longer and much slower. In fact, with this program, it should be pretty easy to write
a BASIC program that simulates a desktop calculator.

Supplying characters from a cliff erent source
Until now, the programs we have looked at that steal control away from the input

have only done it so that specific characters could be checked for. There is another

92 I Chapter 5

reason to steal control of the input however, and that's to input data from another
source altogether. DOS does this when it inputs data from an EXEC (text) file. It
reads a text file and then fools the computer into thinking that the data coming from
the text file came from the keyboard.

Fooling the computer into thinking that text is coming from the keyboard, when
it is really coming from somewhere else, is not difficult . First you have to point the
input hooks ($38 and $39) to your substitute program. The first thing that the new
input handler should do is to save the X-register so that it can be restored before the
new routine is exited. Also, ifthe new input program is going to allow the user to
enter ESCape characters and the right arrow (Control-U) the Y-register must also
be saved on entry and restored on exit .

After you save the appropriate registers, the accumulator must be loaded with
the character you want input. The source can be anything, disk, cassette, even
memory. Once the accumulator contains the desired data, the X-register should be
restored if it was modified and an RTS instruction executed. It is the execution of
the RTS that actually enters the character as if it came from the keyboard.

In order to eliminate extraneous characters and spaces at the end of the entry of
data, a program should be able to determine if the current character that is being
loaded into the accumulator is the last character of the text to be entered. To do this ,
a program should be able to look ahead to see if the next character is the text
terminating character, or it should be able to determine if the high bit of the last
character is set (assuming of course that the high bit of all the other characters is
not set).

It is very important to note here that after all of the text has been entered from the
external source, the program must return control of the input to the keyboard. If
this is not done, the program may hang up and the keyboard will be inactive.

EXECing without a disk drive
Now that we have the basic knowledge that we need to write our own programs

for entering data automatically, let's write a program that simulates DOS' EXEC
command. Instead ofusing a disk to store our text file, however, we're going to use
a vacant area of memory. This means that even those people that don't have disk
drives, and that number of people is constantly shrinking , can have the advantages
of an EXEC capability.

The IN-MEMORY EXEC SIMULATOR program starts out by printing out the
title page and waiting for the user to press any key to continue (lines 1340 to 1410).
After doing that, the program gets the address of the beginning of the text buffer
and stores it in a two-byte, zero page pointer called TXTPTR (lines 1490 to 1520) .
Then it gets the starting address of the new input routine and stores it in the input
hooks (lines 1530 to 1610) .

The new input routine starts on line 1720, where the Y-index register is set to
zero. In the next line, a character is loaded into the accumulator from the buffer
area pointed to by TXTPTR, and in line 1740, this character is saved temporarily in

Stealing Control Of The Input I 93

a location labelled ASAVE. Next, the program does a subroutine jump to INCR
(line 1970) where the two-byte text pointer is incremented so that it points to the
next character. In line 1760, this next character is loaded into the accumulator and
then a test is performed to see if the character is a hexadecimal zero, the end of text
marker. If it's not, the previous character, which was temporarily saved in ASAVE,
is retrieved (line 1780) and an RTS instruction is executed (line 1790), causing the
character to be entered. Since this routine does not modify the X-register, there was
no need to save and restore it.

If the end of text marker has been reached, the program branches to line 1870,
where the contents of the X-register are temporarily stored in XSAVE. Next, a
jump is made to a monitor ROM subroutine called SETKBD. What this routine
does is essentially simulate the BASIC command IN#O. By doing this, control of
the input is restored to the keyboard. The X-register was stored because SETKBD
modifies the X-register when it is called. After returning input control to the
keyboard, the program restores the X-register, retrieves the last character to be
entered and executes an RTS instruction.

1000 *************************************
1010 *** *** 1020 *** IN MEMORY EXEC SIMULATOR ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 ******************'k****************** 1090 *
1100 *
1110 .OR $2C6

1120 *
1130 *
1140 * EQUATES
1150 *

0006- 1160 TXTPTR .EQ $6
0008- 1170 XSAVE .EQ $8
0009- 1180 ASA VE .EQ $9
0038- 1190 KSWL .EQ $38
03DO- 1200 WARMDOS . EQ $3DO
03EA- 1210 CONNECT .EQ $3EA
FC58- 1220 HOME .EQ $FC58
FDOC- 1230 RDKEY .EQ $FDOC
FDED- 1240 COUT .EQ $FDED
FE89- 1250 SETKBD . EQ $FE89

1260 *
1270 *
1280 * This section of t he program prints
1290 * out the program title and copyright
1300 * notice and calls the RDKEY routine
1310 * where the program ceases to continue
1320 * unt il a key i s pressed by t he user.
1330 *

02C6- 20 58 FC 1340 JSR HOME Clear t he screen .
02C9- AO 00 1350 LDY #$0 Print out
02CB- B9 15 03 1360 LOOP LDA TEXT,Y opening screen
02CE- FO 06 1370 BEQ NEXT1
02DO- 20 ED FD 1380 JSR COUT
02D3- C8 1390 INY
02D4- DO F5 1400 BNE LOOP
02D6- 20 OC FD 1410 NEXT1 JSR RDKEY Wait for a keypress .

1420 *
1430 *

94 I Chapter 5

1440 * Here the address of the buffer area
14SO * is placed in a pointer and the normal
1460 * keyboard input routine is replaced
1470 * by this program.
1480 *
1490
1SOO
1S10
1S20
1S30
1S40
1SSO
1S60

LDA #BUFFER
LDY /BUFFER
STA TXTPTR
STY TXTPTR+l
LDA #START
LDY /START
STA KSWL

Get buffer
address and
store in a
pointer.
Get address

02D9- A9 8S
02DB- AO 03
02DD- 8S 06
02DF- 84 07
02El- A9 F4
02E3- AO 02
02ES- 8S 38
02E7- 84 39
02E9- AD DO
02EC- C9 4C
02EE- DO 03
02FO- 20 EA
02F3- 60

03 1S70
1S80
1S90

STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

for input
routine and
store in hooks.
Check for DOS.

No DOS present.
Connect through it. 03 1600

02F4- AO 00
02F6- Bl 06
02F8- 8S 09
02FA- 20 OE 03
02FD- Bl 06
02FF- FO 03
0301- AS 09
0303- 60

1610 NODOS
1620 *
1630 *
1640 * This is the replacement input routine
16SO * to which the computer comes every time
1660 * it would normally look for input from
1670 * the keyboard. Here data are taken
1680 * from the buffer area (pointed to by
1690 * TXTPTR) and used as if they came from
1700 * the keyboard.
1710 *
1720 START
1730
1740
17SO
1760
1770
1780
1790
1800 *
1810 *

LDY #$0
LDA (TXTPTR) , Y
STA ASAVE
JSR INCR
LDA (TXTPTR) ,Y
BEQ DONE
LDA ASAVE
RTS

Set offset to zero.
Get character.
Save it.
Increment pointer.
Get next the character.
Last character, finish up.
Retrieve character.
Enter it.

1820 * When there is no more data in the
1830 * EXEC file buffer, an IN#O is
1840 *simulated (JSR SETKBD), and the X-reg
18SO * is restored.
1860 *

0304-
0306-
0309-
030B-
030D-

86 08 1870 DONE STX
JSR
LDX
LDA
RTS

XSAVE
SETKBD
XSAVE
ASA VE

Save X-register.
Do IN#O. 20 89 FE 1880

A6 08 1890
AS 09 1900
60 1910

1920 *
1930 *

Restore X-registore.
Restore accumulator.

1940 * This routine increments the two-byte
19SO * pointer TXTPTR.

030E- E6 06
0310- DO 02
0312- E6 07
0314- 60

1960 *
1970 INCR
1980
1990
2000 NEXT2
2010 *
2020 *

INC
BNE
INC
RTS

TXTPTR
NEXT2
TXTPTR+l

Increment low byte.

Increment high byte.
Return.

2030 * This is the program title and
2040 * copyright notice.

031S- C9 CE AD
0318- CD CS CD
031B- CF D2 D9
031E- AO CS D8
0321- CS C3 AO
0324- D3 C9 CD
0327- DS CC Cl

20SO *

032A- D4 CF D2 2060 TEXT
032D- 8D 2070
032E- C2 D9 AO
0331- CA DS CC

.AS -"IN-MEMORY EXEC SIMULATOR"

.HS 8D

Stealing Control Of The Input I 95

0334- CS D3 AO
0331- C8 AE AO
033A- Cl C9 CC
033D- C4 CS D2 2080 . AS -"BY JULES H. GILDER"
0340- 8D 2090 . HS 8D
0341- C3 CF DO
0344- D9 D2 C9
0341- Cl C8 D4
034A- AO A8 C3
034D- A9 AO Bl
03SO- B9 B8 B2 2100 . AS -"COPYRIGHT (C) 1982"
03S3- 8D 2110 . HS 8D
03S4- Cl CC cc
03Sl- AO D2 C9
03SA- Cl C8 D4
03SD- D3 AO D2
0360- CS D3 CS
0363- D2 D6 CS
0366- C4 2120 . AS -"ALL RIGHTS RESERVED"
0361- 8D 8D 8D
036A- 8D 2130 . HS 8D8D8D8D
036B- DO D2 CS
036E- D3 D3 AO
0311- Cl CE D9
0314- AO CB CS
0377- D9 AO D4
03lA- CF AO C3
03lD- CF CE D4
0380- C9 CE DS
0383- cs 2140 .AS -"PRESS ANY KEY TO CONTINUE"
0384- 00 21SO .HS 00

2160 * 2110 * 2180 * This is a sample 'EXEC' file that is
2190 * automatically executed when this
2200 * this program is run by doing a CALL 110 .
2210 *

038S- CE CS Dl 2220 BUFFER .AS -''NEW''
0388- 8D 2230 .HS 8D
0389- Bl BO C8
038C- CF CD CS 2240 .AS -"lOHOME"
038F- 8D 22SO .HS 8D
0390- B2 BO C6
0393- CF D2 D8
0396- BD Bl D4
0399- CF B2 BS
039C- BS 2260 .AS -"20FORX=lT02SS"
039D- 8D 2210 . HS 8D
039E- B3 BO BF
03Al- C3 C8 D2
03A4- A4 A8 D8
03Al- A9 BB 2280 .AS - "30?CHR$(X) ;"
03A9- 8D 2290 .HS 8D
03AA- B4 BO CE
03AD- CS D8 D4
03BO- D8 2300 .AS -"40NEXTX"
03Bl- 8D 2310 .HS 8D
03B2- BS BO BF 2320 . AS -"50?"
03BS- 8D 2330 .HS 8D
03B6- D2 DS CE 2340 .AS -''RUN11

03B9- 8D 23SO .HS 8D
03BA- CC C9 D3
03BD- D4 2360 . AS -"LIST"
03BE- 8D 2310 .HS 8D
03BF- 00 2380 .HS 00

As you can see from the listing, the actual replacement input routine is only 32
bytes long ($2F4 to $314). The 46 bytes that precede these are used to print out the
title screen and set up the new input program. The bulk of the space is taken up by

96 I Chapter 5

text for the screen, which begins on line 2060 and the buffer which begins on line
2220.

This program resides in memory starting at $2C6 and can be activated by typing
CALL 710 from the immediate mode in Applesoft. When run in this manner, the
program will execute a sample 'EXEC' file that has been included. The file shows
how both immediate mode commands and deferred mode program lines can be
entered. When 'EXEC'ed, the file will perform the NEW command, enter a short
program that prints out the entire ASCII character set, run the program and then
list it. By changing the address of the buffer and its contents, you can EXEC
anything you want.

Save keystrokes by using Applesoft shorthand
By combining both of the major characteristics associated with new input han

dling routines: the ability to check for the pressing of specific keys and the the
ability to input text from memory or some other source, we can write a program
that will significantly reduce the number keys pressed when writing Applesoft
programs. Known as APPLESOFT SHORTHAND, this program makes it possi
ble to enter the most frequently used Applesoft commands with a single keystroke.
This entry of several letters or words with a single keystroke, is often referred to as
a keyboard macro.

The theory of operation of the program is that the normal input routine is
replaced with a new one that allows entry of data either from the keyboard or
memory, depending on the status of a flag byte. When keyboard entry is allowed,
the character entered is tested to see if it is one of twenty-one preselected control
characters. If it's not, the control character is entered as it normally would be. But,
if it is part of the designated set, then instead of being entered, the control character
is used to specify a string of characters that is to be entered instead.

In this program, most of the characters that will be entered in place of the control
codes are Applesoft keywords, a table of which resides in the Applesoft interpreter
ROMs starting at address $DODO and ending at address $D25E. This table of
keywords is also known as a token table. The text stored in this table is unusual in
that the high bit of the last letter of the word is set. This is used as an end of text
delimiter instead of the zero that has been used throughout the programs in this
book so far. It's chief advantage is that it saves one byte per text message.

You'll notice that I said MOST of the characters that will be entered in place of
the control codes are Applesoft keywords, not all of them. In fact, two of the
control characters - Control-@ and Control-E - are used to enter frequently
used phrases. Control-@ enters the call to the monitor 'CALL-151 ',including the
carriage return that follows it. Thus, by pressing Control-@ , the user is automati
cally dropped into the monitor mode. The Control-Eis used when you want to edit
Applesoft program lines because it automatically executes (that means it includes
the carriage return) the phrase ' POKE 33,33'. A listing of the addresses, the
control code and the keyword or phrase that is printed when the particular control

Stealing Control Of The Input I 97

key is pressed is shown in the table that starts at line 2560 of the accompanying
program listing.

The program starts on line 1310 with a jump past the title page text (which sits in
page two) to the beginning of the program on line 1520. Lines 1520 to 1580 clear the
screen and print out the title page, while lines 1590 to 1660 set the input hooks to
the start of the replacement input routine. Lines 1670 to 1690 set the input mode
flag to zero so that the program will recognize input from the keyboard, and then
passes control to the new input routine by executing an RTS instruction.

The input replacement routine starts on line 1850, where the contents of the X
register and the accumulator are saved for later. The first thing that this program
does after storing the registers, is to determine what mode it is in. It does this by
loading the input mode flag into the accumulator (line 1870) and checking its value.
If the flag is set to zero, the program is in the keyboard mode and data can be
accepted from the keyboard. If, on the other hand, the value offiag is anything but
zero, the program is in the macro mode and data will be entered from the appropri
ate table. During this time, the keyboard will be dead.

The routine that handles the keyboard entry of data starts on line 1890, where the
former contents of the accumulator are restored. After doing that, the program
jumps to the monitor ROM's input routine to read the keyboard (line 1900). Once a
character has been entered, it is compared with all of the preassigned control codes
(lines 1910 to 1960). If no match is found, the X-register is restored (line 1970) and
the character is allowed to pass through this routine unmodified and is entered by
executing the RTS in line 1980.

If, however, a match is found, the program branches to line 2060 and the input
mode flag is incremented - switching it from the keyboard mode to the macro
mode. The contents of the X-register, which was used as an index into the control
code table is transferred to the accumulator (line 2070) where it is doubled (line
2080) and then placed back in the X-register. The reason for the doubling is that
while the control code table consisted of individual bytes, each entry in the macro
address table consists of two bytes. The X-register is now used as an index into the
MACRO table of addresses and the low and high bytes of the addresses are re
trieved in turn and stored in the page zero pointer TXTPTR (lines 2100 to 2140).
Since the X-register was modified by this routine, it is now restored to its former
value (line 2150) and control is passed to the routine that handles the input of text
from memory. This routine is called MACROIN and starts on line 2210.

In line 2220, a character is retrieved from the address pointed to by TXTPTR.
Next, a check is made to see if the high bit is set, a signal that this is the last
character of the current macro (line 2230). If the high bit is not set (line 2240), a
branch is made to line 2270, where the high bit is set. Line 2250 is reached only if
the character currently in the accumulator is the last one to be printed and hence its
high bit is set. Here the mode flag is reset to zero so that the program will know that
the next character that is to be input will come from the keyboard. Next, the
program falls into the routine that sets the high bit (line 2270). Since the high bit of

98 I Chapter 5

this character is already set, nothing happens here and the program goes on to
increment the two-byte pointer TXTPTR, restore the X-register and enter the
character currently in the accumulator (lines 2280 to 2300).

A table called CODES, that contains all of the control codes that have been
assigned as shorthand keys, is located on lines 2460 to 2490, while the table
containing the addresses of the text to be printed out for each key, begins on line
2560. Lines 2770 to 2800 contain the macros for Control-@ and Control-E. On
line 2770, notice that there is no hyphen preceding the first quotation mark as there
is in most of the other programs in this book. The absence of the hyphen, as was
described earlier in the book, indicates that the text is to be assembled without the
high bit set. The presence of the hyphen causes the high bit to be set. The last
character in each of the two macros listed here is $8D, which is a carriage return
with the high bit set. These bytes serve as terminators for the macros.

0006-
0008-
0009-
0018-
0038-
03DO-
03EA
FCS8-
FDOC
FDlB
FDED-

028A- 4C EB 02

028D- Cl DO DO
0290- CC CS D3
0293- CF C6 D4
0296- AO D3 C8
0299- CF D2 D4
029C- C8 Cl CE
029F- C4 AO C9
02A2- CE D4 CS
02AS- D2 DO D2
02A8- CS D4 CS

1000 *************************************
1010 *** ***
1020 *** APPLESOFT SHORTHAND ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

.OR $28A

1150 * EQUATES
1160 *
1170 TXTPTR
1180 XSAVE
1190 FLAG
1200 ASAVE
1210 KSWL
1220 WARMDOS
1230 CONNECT
1240 HOME
12SO RDKEY
1260 KEYIN
1270 GOUT
1280 *
1290 *
1300 *
1310
1320 *
1330 *

.EQ $6

.EQ $8

.EQ $9

.EQ $18

. EQ $38

.EQ $3DO

.EQ $3EA

.EQ $FCS8

.EQ $FDOC

.EQ $FD1B

.EQ $FDED

JMP BEGIN

1340 * This is the text for the title page.
13SO *

02AB- D2 1360 TEXT .AS -"APPLESOFT SHORTHAND INTERPRETER"
.HS 8D8D 02AC- 8D SD 1370

Stealing Control Of The Input I 99

02AE- C2 D9 AO
02Bl- CA DS CC
02B4- CS D3 AO
02B7- C8 AE AO
02BA- C7 C9 CC
02BD- C4 CS D2
02CO- 8D
02Cl- C3 CF DO
02C4- D9 D2 C9
02C7- Cl CB D4
02CA- AO A8 C3
02CD- A9 AO Bl
02DO- B9 B8 B2
02D3- 8D
02D4- Cl CC CC
02D7- AO D2 C9
02DA- C7 C8 D4
02DD- D3 AO D2
02EO- CS D3 CS
02E3- D2 D6 CS
02E6- C4
02E7- 8D 8D 8D
02EA- 00

1380
1390

1400
1410

1420

1430
1440 *
14SO *

.AS -"BY JULES H. GILDER"

.HS 8D

.AS -"COPYRIGHT (C) 1982"

.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8DOO

1460 * This part of the program steals control
1470 * away from the input and sets the
1480 * address of START in the input hooks.
1490 * It also sets the mode flag for input
lSOO * of data from the keyboard.
1S10 *

FC 1S20 BEGIN
1S30

02 1S40 LOOP
lSSO

FD 1S60
1S70
1S80

JSR HOME
LDY #$0
LDA TEXT,Y
BEQ BEGIN2
JSR COUT
INY

Clear the screen.
Print out the
opening screen.

02EB- 20 S8
02EE- AO 00
02FO- B9 8D
02F3- FO 06
02FS- 20 ED
02F8- C8
02F9- DO FS
02FB- A9 12
02FD- AO 03
02FF- 8S 38
0301- 84 39
0303- AD DO
0306- C9 4C
0308- DO 03
030A- 20 EA
030D- A9 00
030F- 8S 09
0311- 60

1S90 BEGIN2
1600
1610

BNE LOOP
LDA #START
LDY /START
STA KSWL
STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
LDA #$0

Get the address of the
start of the program
and store it in

0312- 86
0314- 8S
0316- AS
0318- DO
031A- AS
031C- 20
031F- A2
0321- DD
0324- FO

1620
03 1630

1640
16SO

03 1660
1670 NODOS
1680
1690
1700 *
1710 *

STA FLAG
RTS

the input hooks.
Is DOS present?

No.
Yes, connect through
Se t input flag to
value for keyboard.
Return to caller.

1720 * Here, the X-register is saved for
1730 * restoring later and a check is made
1740 * to see whether the keyboard or macro
17SO * mode is active. If the macro mode i s
1760 * active a branch to the appropriate
1770 * routine is made . Otherwise, a character
1780 * is input from the keyboard and a check
1790 * is made to s ee if it is one of the macro
1800 * codes. If not the character passes
1810 * through as is, otherwise the program
1820 * branches to a routine to setup the
1830 * macro input.
1840 *

08 18SO START
18 1860
09 1870
26 1880
18 1890
1B FD 1900
00 1910
SB 03 1920 LOOPl
08 1930

STX XSAVE
STA ASAVE
LDA FLAG
BNE MACROIN
LDA ASAVE
JSR KEYIN
LDX #$0
CMP CODES,X
BEQ VALID

Save X-register.
Save accumulator.
Check mode flag.
Not in keyboard mode.
Restore accumulator.
Read the keyboard.
Zero offset counter.
See if valid control
Valid code entered .

DOS .

code.

100 I Chapter 5

0326- ES
0327- EO 15
0329- DO F6
032B- A6 08
032D- 60

1940
1950
1960
1970
1980
1990 *
2000 *

INX
CPX #$15
BNE LOOPl
LDX XSAVE
RTS

Increment offset.
All codes checked?
No, do more.
Restore X-register.
Yes, r eturn.

2010 * Here the index of the control code is
2020 * converted to an index into the macro
2030 * address table and the mode flag i s set
2040 * to the macro mode.
2050 *
2060 VALID
2070
2080
2090

INC FLAG
TXA
ASL
TAX

Set macro mode.
Transfer X to accumulator .
Double it.
Put it back in X.

032E- E6 09
0330- BA
0331- OA
0332- AA
0333- BD 70
0336- 85 06
0338- ES
0339- BD
033C- 85
033E- A6

03 2100 LDA MACRO,X
STA TXTPTR

Get low-byte of macro.
Store i t in TXTPTR .

70 03
07
08

2110
2120
2130
2140
2150
2160 *
2170 *

INX
LDA
STA
LDX

MACRO ,X
TXTPTR+l
XSAVE

Increment pointer.
Get hi-byte of macro.
Store it in TXTPTR+l .
Restore X-register .

2180 * This is the routine that actually prints
2190 * out the macro.
2200 *

0340- AO
0342- Bl
0344- C9
0346- 90
0348- AO
034A- 84
034C- 09
034E- 20
0351- A6
0353- 60

00 2210 MACROIN LDY #$0 Set offset to zero.
Get character 06 2220 LDA (TXTPTR),Y

80 2230 CMP #$80 I s high bit set?
No, set it . 04 2240 BCC SETHI

00 2250 LDY #$0 Reset mode flag to
keyboard mode. 09 2260 STY FLAG

80 2270 SETHI ORA #$80 Set high bit.
Increment TXTPTR.
Restor e X-register.

54 03 2280 JSR INCR
08 2290 LDX XSAVE

0354- E6 06
0356- DO 02
0358- E6 07
035A- 60

035B- 80 81 82
035E- 83 85 86
0361- 87 89 SA

2300 RTS
2310 *
2320 *
2330 * This routine increments the two-byte
2340 * pointer used to retrieve the text of
2350 * the macro.
2360 *
2370 INCR INC TXTPTR
2380 BNE RETURN
2390 INC TXTPTR+l
2400 RETURN RTS
2410 *
2420 *

Increment TXTPTR low byte.

Increment TXTPTR high byte.

2430 * Thi s is a table of control codes that
2440 * ha v e be e n set aside for the s h orthand codes .
2450 *

0364- SB SC 2460 CODES
2470 *

.HS 80818283858687898A8B8C
@ A B C E F G I J K L

0366- SE SF 90
0369- 91 92 94
036C- 96 97 99
036F- 9A

0370- 9A 03
0372- 4C D2
0374- 50 D2
0376- F9 DO
0 378- A3 03
037A- D3 DO

2480 .HS 8E8F909192949697999A
N 0 P Q R T V W Y Z 2490 *

2500 *
2510 *
2520 *
2530 *
2540 *
2550 *
2560 MACRO
2570

This is a table of two- byte addr esses
for each shorthand entry . Entries are
made low-orde r byte first.

2580
2590
2600
2610

.DA MONITOR

.HS 4CD2

.HS 50D2

.HS F9DO

.DA EDIT

.HS D3DO

@
A
B
c
E
F

CALL-151
CHR$
LEFT$
CALL
POKE 33,33
FOR

Stealing Control Of The Input I 101

037C- A4 Dl 2620 .HS A4Dl G GO SUB
037E- DE DO 2630 .HS DEDO I INPUT
0380- 93 Dl 2640 .HS 93Dl J GOTO
0382- 3B D2 2650 . HS 3BD2 K PEEK
0384- D4 Dl 2660 .HS D4Dl L LIST
0386- D6 DO 2670 .HS D6DO N NEXT
0388- C7 Dl 2680 .HS C7Dl 0 POKE
038A- CB Dl 2690 .HS CBDl p PRINT
038C- 4F Dl 2700 . HS 4FD1 Q INVERSE
038E- 97 Dl 2710 .HS 97Dl R RUN
0390- EF Dl 2720 .HS EFDl T THEN
0392- 64 Dl 2730 .HS 64Dl v VTAB
0394- 49 Dl 2740 .HS 49Dl w NORMAL
0396- A9 Dl 2750 . HS A9Dl y RETURN
0398- E3 Dl 2760 . HS E3Dl z TAB(
039A- 43 41 4C
039D- 4C 2D 31
03AO- 35 31 2770 MONITOR .AS "CALL-151"
03A2- 8D 2780 .HS 8D
03A3- 50 4F 4B
03A6- 45 33 33
03A9- 2C 33 33 2790 EDIT .AS "POKE33,33"
03AC- 8D 2800 .HS 8D

Teach your Apple to recogni7.e lowercase letters
As you probably already know, the original Apple computer that comes fresh

out of the box had no lowercase letter capability. For some strange reason, the
ability to enter and display lowercase characters was not included in the Apple II
Plus computer. Demand for lowercase grew however, and soon, quite a few com
panies started selling inexpensive adapters that could be easily installed in an
Apple and allow it to display lowercase letters. And, when the Apple lie and lie
were introduced lowercase capability was finally available.

But displaying lowercase letters is only half the problem, the other half is
entering them from the keyboard. Although the Apple II Plus keyboard does have a
SHIFT key and it can be used to generate some shifted characters - symbols and
punctuation only - it does not allow you to generate the proper ASCII codes for
upper and lowercase characters. In addition, even if it did, there is a routine in the
Apple monitor ROM called CAPfST, the won't permit the entry of a lowercase
character even if some how it were generated.

The routine, which is located at $FD7E, checks to see if the character being
input is in the range of $EO to $FF. If it is, the character is ANDed with the value
$DF. This converts the characters to the $CO to $DF range, which represents the
upper case letters. By simply changing a single byte at $FD83 from $DF to $FF
which was done in the I le and I le, it would be possible to permit the entry of
lowercase characters, assuming of course that they could be generated by the
keyboard. Since most Apple II Plus owners use a ROM version of Applesoft, it is
not too convenient to change the one byte required, and it doesn't solve the rest of
the problem anyway.

Another approach to the problem is to write a special input routine that will
allow you to generate the lowercase codes directly from the keyboard and enter
them. To do this, it will be necessary to, once more, steal control away from the
normal Apple input routines and direct it to a new input program. While this

102 I Chapter 5

program, lDWER CASE INPUT DRIVER, will let you enter lowercase charac
ters, they will not be displaye4 unless you have a lowercase adapter. This will vary
from a single chip to a circuit board that plugs into the Apple and prices range from
$20 to $80. Some of the adapters come with software that will let you enter
lowercase letters. And some of the software is not very good. Some of it will
simply consist of a few lines of BASIC program code that do a crude job in
handling lowercase letters.

You will find this program, however, to be very handy, very reliable, and very
user friendly (that's a term you'll be hearing more and more often). The lDWER
CASE INPUT DRIVER is very versatile and will work either with or without a
hardware modification that makes the SHIFT key on an Apple II Plus active. Most
other lowercase programs work only with the modification or only without it.
What this modification does, is connect the SHIFT key to pin 4 on the game 1/0
connector, where it can be checked by software to see if the key is pressed or not.
Instructions on how to implement this modification are in Appendix C.

If you have not made the modification to the SHIFT key when you installed your
lowercase adapter, you can use the ESCape key for a single character shift or use
Control-A to toggle back and forth between upper and lowercase lock modes. In
the upper case lock mode, the Apple keyboard behaves as it normally does. In the
lowercase lock mode you get both lowercase letters and additional symbols not
normally available.

The program has one additional feature that makes it very user friendly. When
ever the ESCape key is pressed to produce a capital letter, or the Control-A is
pressed to enter either the upper or lowercase modes, the cursor that marks the
place where the next character will appear turns into a flashing 'U' or 'L' depend
ing on whether the next character that will be entered is upper or lowercase. With
this feature, you will always be aware of when the case of the character being input
changes.

The program starts out as most programs of this type, by replacing the address in
the input hooks with the address of the new input routine (lines 1400 to 1440).
Then, the upper case flag is reset so that the program comes up running in the caps
lock mode, just as the Apple normally does (lines 1450 to 1480). The new input
routine starts on line 1580, where a subroutine jump to the monitor's KEYIN
routine is performed. This reads the keyboard and waits for a key to be pressed.
Once a key has been pressed, the program saves the character that was entered
(which is now in the accumulator) and the X-register (lines 1590 and 1600) and
then checks the return address that is on the stack to see if it is $FD77. It does this
by first retrieving the stack pointer from the location where DOS temporarily
stored it, and loading that value into the X-register (line 1610).

Once that is done, we can access the return address that is on the stack and see if
it is $FD77 (lines 1620 to 1650). This is actually one less than the real address
(which is $FD78) because as the address is pulled off the stack later on, the 6502
increments it by one. If the address is not $FD77, the program branches to line 1840
where the accumulator and the X-register are restored and processing continues.

Stealing Control Of The Input I 103

But, if the address on the stack is $FD77, it is changed to ADDCHR-1, which is
$390 (lines 1670 to 1700). ADDCHR is the routine that we use to replace the ROM
code which converts all incoming characters to uppercase. It is similar to the code
in the F8 ROM between $FD78 and $FD83, except that it eliminates the CAPTST
routine, which does the uppercase conversion.

After the address on the stack has been changed, the accumulator and the X
register are restored (lines 1840 and 1850) and the program checks to see if the key
that was pressed earlier, was a Control-A (line 1860). If it was, the program looks at
the input mode flag (line 1880) to find out what mode (upper or lowercase) is
currently active. If the flag is zero, the program is currently in the upper case
mode. And, since a Control-A was pressed, the user has told the computer that the
mode should be changed. The branch at line 1890 causes the program to go to line
1940 where the flag is incremented by one putting the program in the lowercase
mode. In line 1950, the ASCII code for a flashing 'L' is placed in the accumulator,
and in line 1960, the flashing 'L' is placed in the screen in the position where the
next entered character will appear. Thus, the user is alerted to the fact that the next
character that will be entered will be a lowercase character. The program then
branches back to line 1580 to get the next character.

If the mode flag indicates the lowercase mode is currently active, the flag is
decremented by one (line 1900) causing the flag to be reset to zero. This tells the
program that the upper case mode should be active. After resetting the mode flag, a
flashing 'U' is loaded into the accumulator (line 1910) and then stored on the screen
in the position where the next entered character would appear (line 1920). The
program then branches back to line 1580 to get the next character.

If the character that was entered in line 15 80 is not a Control-A, control is passed
to line 2090 where the character is temporarily saved on the stack and the mode flag
is examined (line 2100) to determine what mode the program is in. If the flag
indicates that the caps lock mode is active (line 2110) , the program ceases doing any
processing on the character that was input, retrieves it from the stack (line 2620)
and inputs it as it was entered from the keyboard by executing an RTS instruction
(line 2630).

On the other hand, if the program is in the lowercase lock mode, the character
that was entered is retrieved from the stack (line 2120) and several tests and appro
priate modifications are performed. In line 2130, the character is tested to see if it is
the ESCape key. If it is, the case flag is set by incrementing it by one (line 2150), a
flashing 'U' is placed on the screen (lines 2160 and 2170) and the next character is
input (line 2180).

Thking advantage of the SHIFf key modification
Until now, the program has been dealing with ways of letting the user enter

upper and lowercase letters without making the hardware modification. However,
most people who know how to type, are used to pressing the SHIFT key to get an
upper case letter, so the next routine (CHKSHFT), which starts on line 2300, will

104 I Chapter 5

check for the modified SHIFT key and make letters entered while it is pressed
upper case.

The first thing that the CHKSHFT routine does is to temporarily store the last
character entered on the stack. It then checks the pushbutton port that has been
assigned to game paddle 2 (this does not affect the normal usage of paddles 0 and 1)
to which the SHIFT key has now been connected (line 2310). If the value retrieved
from this pushbutton port ($C063) is between $0 and $7F, the SHIFT key is being
pressed and the program branches to the capitalization routine (line 2480). If it is
$80 or greater, the SHIFT key is not being pressed.

Now that we know the program is not in the caps lock mode and the SHIFT key is
not being pressed, there's only one more thing we have to do, and that is to check if
the ESCape key was pressed just prior to entering this character. If it was, we know
this character is supposed to be upper case, just as if the SHIFT key were being
pressed (lines 2340 and 2350) .

Upon determining that this character is not supposed to be shifted, it is retrieved
from the stack (line 2360) and checked to see if it is a number or letter (line 2370).
If it is a number (line 2380) it is printed out as is. And if it is a letter, it is made

0006-
0007 -
0008-
0009-
0024-
0028-
0038-
0100-
03EA
M59-
C063-
FD1B
FD75-
FD84-

0300- A9 12
0302- AO 03

1000 *************************************
1010 *** ***
1020 *** LOWER CASE INPUT DRIVER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130
1140 *
1150 *
1160 *

.OR $300

1170 * EQUATES
1180 *
1190 FLAG
1200 MODE
1210 ASAVE
1220 XSAVE
1230 CH
1240 BASL
1250 KSWL
1260 STACK
1270 CONNECT
1280 SSAVDOS
1290 SHIFT
1300 KEYIN
1310 NXTCHR
1320 ADDINP
1330 *
1340 *

. EQ $6

.EQ $7

.EQ $8

.EQ $9

.EQ $24

.EQ $28

.EQ $38

.EQ $100

.EQ $3EA

.EQ $M59

.EQ $C063

.EQ $FD1B

.EQ $FD75

.EQ $FD84

1350 * This section steals control of the
1360 *. input and passes all characters to
1370 * be input to the routine beginning
1380 *with START.
1390 *
1400
1410

LDA #START
LDY /START

Get the address of the
start of the program.

Stealing Control Of The Input I 105

lowercase by ORing the value in the accumulator with $20 (line 2390). The pro
gram then branches to the end of the program where the letter is input. The branch
on line 2400 is always taken because the value in the accumulator never equals zero
at this stage of the program.

In the normal Apple, the shifted M, N and P letters produce the], /\ and @

characters. The next routine, called CAP, corrects this so that they produce the
normal capitalized letters instead. To get those three symbols, it is necessary to
first be in the upper case lock mode and then press the SHIFT key and the M, Nor
P keys. In line 2480, the character is retrieved from the stack and in line 2490, it is
tested to see if it is a letter. · If it's not a letter, the program branches to line 2590 and
prints it out. If it is a letter, it is checked to see if it is a P, Mor N (lines 2510 to 2580)
and if it is, the accumulator is loaded with the ASCII code for the appropriate
capital letter.

The final part of this routine, labelled DONE and on line 2590, temporarily
stores the character on the stack, resets the caps mode flag to lowercase (lines 2600
and 2610), retrieves the character from the stack (line 2620) and finally enters the
character by executing an RTS instruction (2630).

0304- 85 38
0306- 84 39
0308- 20 EA 03
030B- A9 00
030D- 85 06
030F- 85 07
0311- 60

1420
1430
1440
1450
1460
1470
1480
1490 *
1500 *

STA KSWL
STY KSWL+l
JSR CONNECT
LDA #$0
STA FLAG
STA MODE
RTS

Store it in the
input hooks.
Connect to DOS.
Reset upper case flag.

Return.

0312- 20 1B
0315- 85 08
0317- 86 09
0319- AE 59
031C- BD 03
031F- C9 77
0321- BD 04
0324- E9 FD
0326- 90 OA
0328- A9 90
032A- 9D 03
032D- A9 03
032F- 9D 04

1510 * This routine replaces the normal
1520 * input routine. A keypress is gotten
1530 * and the accumulator and X-register are
1540 * saved while the return address on the
1550 * stack is changed so the CAPTST routine
1560 * in the monitor ($FD7E) is bypassed .
1570 *

FD 1580 START
1590
1600

AA 1610
01 1620

1630
01 1640

1650
1660
1670

01 1680
1690

01 1700
1710 *
1720 *

JSR KEYIN
STA ASAVE
STX XSAVE
LDX SSAVDOS
LDA STACK+3,X
CMP #NXTCHR+2
LDA STACK+4,X
SBC /NXTCHR+2
BCC NOTINP
LDA #ADDCHR-1
STA STACK+3,X
LDA /ADDCHR-1
STA STACK+4,X

Read the keyboard.
Save the accumulator.
Save the X-register.
Get stack pointer.
See if the
return address on the
stack is $FD78-1.

It's not restore registers.
It is, replace it with
the address of the
ADDCHR routine to
bypass CAPTST.

1730 * Here the accumulator and the X-register
1740 * are restored and the program checks to see
1750 * if a Control-A, which is used as a shift
1760 * lock key, is pressed. If not, the
1770 * processing of the character continues.
1780 * If a Control-A was entered, the program
1790 * determines what mode it is currently
1800 * in, switches to the other and sets the
1810 * prompt to a flashing 'L' or 'U',
1820 * depending on what the new mode is.
1830 *

106 I Chapter 5

0332- AS 08
0334- A6 09
0336- C9 81
0338- DO 14
033A- AS 07
033C- FO 08
033E- C6 07
0340- A9 SS
0342- 91 28
0344- DO CC
0346- E6 07
0348- A9 4C
034A- 91 28
034C- DO C4

034E- 48
034F- AS Q7
03Sl- FO 3C
03S3- 68
03S4- C9 9B
03S6- DO 08
03S8- E6 06
03SA- A9 SS
03SC- 91 28
03SE- DO B2

0360- 48
0361- AD 63 CO
0364- C9 80
0366- 90 OD
0368- AS 06
036A- DO 09
036C- 6B
036D- C9 CO
036F- 90 19
0371- 09 20
0373- DO lS

037S- 68
0376- C9 CO
0378- 90 10
037A- FO OC
037C- C9 DD
037E- FO 04
0380- C9 DE
0382- DO 06
0384- 29 EF

1840 NOTINP
18SO
1860
1870
1880
1890
1900
1910
1920
1930
1940 SETMOD
19SO
1960
1970
1980 *
1990 *

LDA ASAVE
LDX XSAVE
CMP #$81
BNE CONTIN
LDA MODE
BEQ SETMOD
DEC MODE
LDA #$SS
STA {BASL),Y
BNE START
INC MODE
LDA #$4C
STA (BASL) ,Y
BNE START

Restore accumulator.
Restore X-register.
Is it a Ctrl-A?
No, continue processing .
Yes, check current mode.
Now upper case , make lower.
Now lower case, make upper .
Show upper case prompt .

Branch always, get new key.
Set lower case mode .
Show lower case prompt .

Branch always, get new key.

2000 * Here a check is made for caps lock mode.
2010 * If in this mode, the keyboard acts as
2020 * a normal Apple keyboard. If not in
2030 * caps lock, a check is made to see if
2040 * the ESC key {used as a shift key) was
2050 * pressed. If so, cap flag is set and
2060 * upper case prompt is set . Otherwise
2070 * the SHIFT key is checked.
2080 *
2090 CONTIN
2100
2110
2120
2130
2140
21SO
2160
2170
2180
2190 *
2200 *

PHA
LDA MODE
BEQ END
PLA
CMP #$9B
BNE CHKSHFT
INC FLAG
LDA #$SS
STA (BASL), Y
BNE START

Save character.
Check input mode.
Caps lock, input as is.
Lower case, restore character.
Is it the ESC key?
No, check shift key .
Yes , set caps flag.
Set upper case prompt.

Branch always, get new character.

2210 * This section checks to see if a shift
2220 *key, that has been modified by connecting
2230 * it to pin 4 of the Game 1/0 connector,
2240 * has been pressed. If so, capitalize
2250 * letter entered, otherwise see if ESC
2260 * was used to shift case. If so input
2270 * cap, otherwise see if character is a
2280 * letter and make lower case if it is.
2290 *
2300 CHKSHFT
2310
2320
2330
2340
23SO
2360
2370
2380
2390
2400
2410 *
2420 *

PHA
LDA SHIFT
CMP #$80
BCC CAP
LDA FLAG
BNE CAP
PLA
CMP #$CO
BCC DONE
ORA #$20
BNE DONE

Save character.
Check shift key.
Is it down?
Yes, handle it.
No, was ESC used for shift?
Yes, handle it.
No, restore character.
Is it a letter?
No, input as is.
Yes, make it lower case.
Input character.

2430 * This is where Shift M,N and P are
2440 * corrected to their real values. Also
24SO * the caps flag is r eset so lower case
2460 * will be entered.
2470 *
2480 CAP
2490
2500
2510
2S20
2S30
2S40
2S50
2S60 CPTLMN

PLA
CMP #$CO
BCC DONE
BEQ CPTLP
CMP #$DD
BEQ CPTLMN
CMP #$DE
BNE DONE
AND #$EF

Is it a letter?
No, input as is.
Make it a capital-P.
Is it a shift-M?
Yes, make it a capital-M.
Is it a shift-N?
No, input as is.
Capitalize M and N.

Stealing Control Of The Input I 107

0386- DO 02 2570 BNE DONE Input it.
0388- A9 DO 2580 CPTLP LDA #$DO Get a capital-P.
038A- 48 2590 DONE PHA Save character .
038B- A9 00 2600 LDA #$0 Reset the caps
038D- 85 06 2610 STA FLAG mode flag.
038F- 68 2620 END PLA Retrieve character .
0390- 60 2630 RTS Input it.

2640 *
2650 * 2660 * This routine substitutes for the code
2670 * between $FD78 and $FD83 in the F8 ROM
2680 * and permits t he entry of lowercase characters .
2690 *

0391- C9 95 2700 ADDCHR CMP #$95 Is character a Ctrl-U?
0393- DO 04 2710 BNE GOADD No, put it in input buffer.
0395- A4 24 2720 LDY CH Yes, get t he previous
0397- Bl 28 2730 LDA (BASL) ,Y character a nd add it
0399- 4C 84 FD 2740 GO ADD JMP ADDINP to the input buffe r .

Chapter6

USING SOUND IN YOUR PROGRAMS

One of the really nice things about the Apple computer is that it has a built-in
speaker that can be controlled by software. While the speaker is small, and the
quality of sound it produces can be less than high fidelity, nevertheless, it can be
used for a wide variety of applications from generating warning signals by an
application program to generating music. It can even be used to generate some
fairly realistic sound effects for action games.

While the use of the internal speaker is limited only by your own imagination, a
small sampling of useful routines and applications will be presented here. Some of
these programs can be used by themselves, such as the KEYBOARD CLICKER,
MORSE CODE GENERA1DR and CASSETTE DUPLICA1DR, while others
can be used with BASIC or machine language programs to produce desired sound
effects. On the sound effects programs, feel free to vary the parameters and see
what effect the change has on the sound. You might just come up with that elusive
sound you've been looking for.

A major portion of the sound programs in this chapter are made available
through the kind permission of Bob Sander-Cederlof, who puts out a monthly

108

Using Sound in Your Programs I 109

publication called Apple Assembly Line. Those programs, and some of the ex
planatory text, come from the February 1981 issue of Apple Assembly Line.

The speaker hardware in the Apple is very simple. A flip-flop, which is a device
that repeatedly alternates between two states (e.g. ON and OFF), controls the
current that is supplied to the coil of the speaker. The flip-flop is connected in such
a way, that it reverses the flow of current through the speaker's coil. This is
important, because the direction of the current flow determines whether the cone
of the speaker is pulled in or out. If we "toggle" the flip-flop and cause it to
continuously reverse the flow of current through the speaker, we can cause the
speaker to produce audible sound. The rate at which we toggle, determines the
frequency of the sound. And, by changing the toggling of the speaker dynamically,
it is possible to produce some very complex sounds. The toggling of the speaker is
accomplished by accessing location $C030 with any of the load, store or BIT
instructions.

How to generate a simple tone
To generate a simple tone, it is only necessary to toggle the speaker at a rate that

is low enough so that it falls within the range of 20 to 20,000 Hertz (cycles per
second), which is the range of signals that the human ear can detect . The program
SIMPLE 'IDNE ROUTINE generates a tone burst of 128 cycles (this is equal to
256 half-cycles) . Each half cycle here consists of 1288 Apple clock pulses. Since
the internal Apple clock frequency is about 1 MHz, the frequency of sound that is
produced is about 338 Hz.

The program starts out by setting the Y-register, which is used as a half-cycle
counter, to zero (line 1210). In line 1220, the X-register, which is used as a delay
counter, is also set to zero. The sound producing section of code starts with LOO Pl
on line 1230, where the speaker is toggled. After toggling the speaker, the program
waits, while LOOP2 is executed (lines 1240 and 1250). LOOP2 is only used to
produce a time delay, which will be equal to the amount of time it takes to decre
ment the X-register to zero. After the delay, the Y-register is decremented (line
1260) and the speaker is toggled once more (line 1270). This continues until 256
half-cycles (128 cycles) are completed.

Figuring out the frequency
At this point, you might be curious how the frequency is figured out. This is

done by determining the time taken up by each half cycle, doubling it and then
taking its inverse. Let's go through a sample calculation.

To start with, we have to add up all of the 6502 cycles for each instruction in the
sound producing loop (lines 1230 to 1270). To avoid confusion between the 6502
cycles and the cycles of the sound producing loop, each half cycle will be referred
to as a pulse. Thus, there are two pulses per sound producing cycle (Hz) . The LDA
instruction in line 1230 takes 4 cycles. The DEX instruction on the next line, takes

110 I Chapter 6

1000 *************************************
1010 *** ***
1020 *** SIMPLE TONE ROUTINE ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 I SSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (C) 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *************************************
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *

C030- 1180 SPEAKER .EQ $C030
1190 *
1200 *

0800- AO 00 1210 LDY #$0 Cycle counter
0802- A2 00 1220 LDX #$0 Delay counter
0804- AD 30 co 1230 LOO Pl LDA SPEAKER Toggle s peaker
0807- CA 1240 LOOP2 DEX Decrement delay counter.
0808- DO FD 1250 BNE LOOP2
080A- 88 1260 DEY Do 128 cycl es .
080B- DO F7 1270 BNE LOOPl
080D- 60 1280 RTS

2 cycles and the BNE instruction in line 1250 takes 3 cycles when it branches and
only 2 cycles when it does not branch. The DEX-BNE pair in lines 1240 and 1250
are executed 256 times for each pulse. The last time through this loop the BNE
instruction does not branch, and thus only 2 cycles are used. The DEY-BNE pair
will branch once for each pulse, so 5 cycles are used here. Now let's total up the
number of cycles used:

Operation
Toggle speaker
Delay loop (5 x 255) =
End of delay loop
DEY-BNE Pair

Total Number of Cycles

Cycles
4

1275
4
5

1288

Since the Apple's internal clock works at roughly 1 MHz, each cycle is equal to 1
microsecond. So for each pulse, or each half of a sound generating cycle, 1288
microseconds are required. Doubling this, to get 2576 microseconds, gives us the
time required for each sound cycle and using the formula:

Frequency = I/Time

This formula assumes time is measured in seconds. If it is measured in micro
seconds, as it is here, the formula becomes:

Frequency = l,OOO,OOO
Time

Using Sound in Your Programs I 111

Thus, we can calculate the frequency as being equal to:

F 1,000,000
requency = 2576 = 388Hz

As you can see, by increasing or decreasing the amount of delay within the
sound-producing loop, it is possible to change the frequency of the sound that is
generated.

Examining the Apple BELL routine
The preceding program is good for producing a sound of 388 Hz. But if you

wanted to change the frequency, you'd have to change the program to increase or
decrease the delay. It would be much more convenient to have a program that can
be entered with a variable related to the frequency so that the same routine could be
used to generate a whole range of frequencies. This is what Apple Computer did
with the BELL routine inside the F8 ROM, at location $FBE2.

Unlike the the previous program, the APPLE BELL ROUTINE uses another
monitor routine WAIT ($FCA8) to produce the delay that determines the width of
the generated pulse. Thus, if the Y-register and the accumulator are loaded with
data and this program is entered at line 1210, the user has full control over the
frequency and duration of the pulse.

The APPLE BELL ROUTINE starts on line 1190 where the Y-register is preset
for 192 ($CO) sound cycles. This is simply used to determine how long the sound
will be played. On line 1200, the accumulator is loaded with a value that is used by
the WAIT routine to generate a time delay. The delay can be determined by the
following formula:

C030-
FCA8-

0800- AO CO
0802- A9 OC
0804- 20 A8 FC
0807- AD 30 CO
080A- 88
080B- DO F5
080D- 60

1000 *************************************
1010 *** ***
1020 *** APPLE BELL ROUTINE ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
1150 SPEAKER . EQ $C030
1160 WAIT . EQ $FCA8
1170 *
1180 *
1190
1200 BELL2
1210
1220
1230
1240
1250

LDY #$CO
LDA #$0C
JSR WAIT
LDA SPEAKER
DEY
BNE BELL2
RTS

Number of half-cycles
Set delay to 500 microseconds,
the half cycle of 1000 Hz.
Toggle the speaker.
Count the half cycl e.
Not finished.
Finished return to caller:

112 I Chapter 6

Delay = (13 + 13.5A + 2.5A2) x 1.023 microseconds

where A is the number that is in the accumulator. In the BELL routine, the accu
mulator is loaded with 12 ($0C) to produce a time delay of about 500 microseconds
per half cycle. This means the frequency of the sound generated would be about
1000 Hz. After the delay in the WAIT subroutine (line 1210), the program comes
back to toggle the speaker (line 1220). Next, the number of half cycles that are left
to be played is decreased by one (line 1230) and a check is made to see if all of the
half cycles have been played (line 1240). If not, the program goes back to line 1200
to play another half cycle.

Let your keyboard tell you what's happening
For those of you who are light-of-touch, and aren't always sure that the key you

pressed on the keyboard went down far enough to register, the next program is for
you. Called the KEYBOARD CLICKER, this program provides you with audio
feedback that tells you when a key has been pressed. The program uses the tech
niques we learned in the last chapter to steal control away from the normal input
routines and channel it to a new input routine (lines 1270 to 1350). The new
program checks to see if a key has been pressed, and if so, generates a short click
through the Apple's internal speaker.

The new input routine, which starts at line 1430, temporarily stores the accumu
lator and the Y-register on the stack (lines 1430 to 1450), so that they can be
restored to their original values after the speaker has clicked. With the contents of
the Y-register safely stored, a new value of 10 ($A) is placed in the register (line
1460) and a subroutine jump is made to the BELL2 entry point of the Apple's
BELL routine (line 14 70). What this does, is to generate a frequency of 1000 Hz
(we haven't changed the amount of time spent in the WAIT loop) that consists only
of 5 cycles (10 half cycles) . The result is a nicely audible click. If the sound is too
pronounced, you can reduce it by loading the Y-register in line 1460 with a 2. If you
want it more pronounced, you can load in larger numbers up to 255 ($FF).

After the click has been generated, the Y-register and accumulator are restored
(lines 1480 to 1500) and the next key press is gotten.

RAT-A-TAT-TAT here's the Apple machine gun

The next four programs are going to show you how it's possible to produce sound
effects on the Apple's internal speaker. The first effect will be that of a machine
gun. The sound of a machine gun is not composed of tones, but instead is made up
of noise, or random sounds. If we were to generate pulses with random widths ,
we'd generate noise that could sound just like machine-gun fire. That's what is
done in the program MACHINE GUN NOISE.

The program starts out by setting up the X-register to determine how many
pulses will be in the noise burst, or how long the burst of will last (line 1230). In
lines 1240 and 1250, an additional one-byte counter is set up to determine the

0038-
03DO-
03EA
FBE4-
FDlB-

0800- A9 13
0802- AO 08
0804- 85 38
0806- 84 39
0808- AD DO
080B- C9 4C
080D- DO 03
080F- 20 EA
0812- 60

OA

Using Sound in Your Programs I 113

1000 *************************************
1010 *** ***
1020 *** KEYBOARD CLICKER ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130 * EQUATES
1140 *
1150 KSWL
1160 WARMDOS
1170 CONNECT
1180 BELL2
1190 KEYIN
1200 *
1210 *

.EQ $38

.EQ $3DO

.EQ $3EA

.EQ $FBE4

.EQ $FD1B

1220 * This section steals control of the
1230 * input and passes all characters to
1240 * be output to the routine beginning
1250 *with START.
1260 *
1270
1280
1290
1300

03 1310
1320
1330

03 1340
1350 NODOS
1360 *
1370 *

LDA #START
LDY /START
STA KSWL
STY KSWL+l
LDA WARMDOS
CMP #$4C
BNE NODOS
JSR CONNECT
RTS

Get the address of
the start of the program.
Store it in the
input hooks.
Is DOS present?

No.
Yes, connect to DOS.
Return.

1380 * This routine replaces the normal
1390
1400
1410
1420

* input routine and causes a click to
* be generated each time a key on the
* keyboard is pressed.

*
1430 START
1440

PHA
TYA
PHA

Save entered character.
Save the Y-register.

1450

0813- 48
0814- 98
0815- 48
0816- AO
0818- 20
081B- 68
081C- A8
081D- 68
081E- 4C

E4 FB
1460
1470
1480

LDY #$A
JSR BELL2
PLA

Setup short a
bell (click).

1B FD

1490
1500
1510

TAY
PLA
JMP KEYIN

Restore the Y-register.

Restore the character.
Get the next key press.

number of bursts that will be heard. Next, the speaker is toggled at line 1260. The
width of each pulse produced by the speaker (each half cycle) is determined by line
1270. Here, the Y-register is loaded with a pseudo-random number that is used to
determine the pulse width, which is caused by the delay generated in LOOP2 (lines
1280 and 1290). The particular area chosen was the first page of the F8 ROM.
Since this is ROM, the data will stay the same from computer to computer and the
noise is repeatable. But experiment a little. Use different addresses in line 1270 and
listen to how the sound changes.

After the delay caused by LOOP2, the X-register, or pulse counter, is decre
mented and the next pulse is generated (lines 1300 and 1310). When all of the pulses
of the burst have been generated, the program reduces the burst counter by one

114 I Chapter 6

Use your Apple as a machine gun.

(line 1320) and starts generating the next burst of pulses (line 1330). This goes on
until 10 bursts have been generated.

Use swooping lasers for space games
Moving up from conventional handheld weaponry to the weapons of the future,

the next sound we are going to learn how to create is the swoop of a laser gun. Laser
swoops, or blasts, are a common feature in space games, and the addition of this
sound effect makes those games appear that much more realistic.

To produce a laser blast sound, it is necessary for us to change the width of the
pulse being generated from a wide one to a narrow one. This will produce a low
tone that gradually slides higher and higher until it is beyond the range of the
human ear (or the Apple's speaker).

The program starts out by setting up some parameters. In lines 1240 and 1250 the
program sets up the routine for producing only one pulse at each width. Next, in
line 1260, a maximum width is assigned to the pulse. The sound generation routine
starts at line 1280 where the Y-register is loaded with the pulse count, in this case
one. The speaker is toggled in line 1290 and the delay required to produce the
desired pulse width is set up and executed in lines 1300 to 1320. In line 1330, the
pulse counter (Y-register) is decremented until the count becomes zero. Once this
occurs, the width of the pulse is reduced (lines 1350 and 1360) until the width
becomes zero, at which point the program returns to its calling routine or mode
(1370).

If you run the program at $800 you will hear one swoop which is not too
impressive. However, if you use the additional Multi-Swooper routine, you will
hear some very nice laser blasts. This simple routine, which starts at line 1420,
merely calls the SWOOP program 10 times.

Using Sound in Your Programs I 115

1000 *************************************
1010 *** ***
1020 *** MACHINE GUN NOISE ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (C) 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *************************************
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *

0000- 1180 COUNTER .EQ $0
BAOO- 1190 RANDOM .EQ $F800
C030- 1200 SPEAKER .EQ $C030

1210 *
1220 *

0800- A2 40 1230 LDX #$40 Lengt:h of noise burst:.
0802- A9 OA 1240 LDA #$0A Number of noise burst:s.
0804- 85 00 1250 STA COUNTER
0806- AD 30 CO 1260 LOO Pl LDA SPEAKER Toggle speaker.
0809- BC 00 F8 1270 LDY RANDOM,X Get: pulse widt:h pseudo-randomly.
080C- 88 1280 LOOP2 DEY Delay loop for pulse widt:h.
080D- DO FD 1290 BNE LOOP2
080F- CA 1300 DEX Get: next: pulse in burst:.
0810- DO F4 1310 BNE LOOPl
0812- C6 00 1320 DEC COUNTER Get: next: noise burst:.
0814- DO FO 1330 BNE LOOPl
0816- 60 1340 RTS

If you're going to use a routine such as this one in a program, you're probably
concerned about making the visual effects of the laser blast appear simultaneously
with the sound. There is no possibility of doing two things at once on the Apple,
but if you do things fast enough, they can be done one right after the other, and still
appear to be simultaneous. That's the case here. Because this is a machine lan
guage routine and fairly fast, it is possible to generate the sound first and then the
graphics and have it appear to occur simultaneously.

This program is a fairly versatile one and I encourage you to experiment a little.
You can start out by changing the values in line 1260 from 160 to 128, 80 and 40 to
see what effect these have on the sound produced. Next, try changing the number
of pulses generated at each width (line 1240). Here you might want to try numbers
such as 2, 5, 20 and 40. But don't limit yourself to these, experiment. Another thing
you might want to try is running the pulse width in the opposite direction, from a
narrow pulse to a wide one. You can do this by changing line 1350 to INC
PULSWDH. Finally, try changing the number of swoops generated (line 1420).

Do your blasting with I~ memory
Another program to produce laser blasts, LASER SWOOP 2, can do a similar

job with about half of the memory. This is done by integrating both the Multi
Swooper and the Swoop generator into one program.

116 I Chapter 6

1000 *************************************
1010 *** ***
1020 *** LASER SWOOP 1 ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (Cl 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *************************************
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *

0000- 1180 PULSCNT .EQ $0
0001- 1190 PULSWDH . EQ $1
0002- 1200 SWOOPCT .EQ $2
C030- 1210 SPEAKER .EQ $C030

1220 *
1230 *

0800- A9 01 1240 SWOOP LDA #$1 One pulse at each width.
0802- 85 00 1250 STA PULSCNT
0804- A9 AO 1260 LDA #$AO Start with maximum width of 160.
0806- 85 01 1270 STA PULSWDH
0808- A4 00 1280 LOO Pl LDY PULSCNT
080A- AD 30 co 1290 LOOP2 LDA SPEAKER Toggle the speaker .
080D- A6 01 1300 LDX PULSWDH
080F- CA 1310 LOOP3 DEX Delay loop for one pulse.
0810- DO FD 1320 BNE LOOP3
0812- 88 1330 DEY Loop for number of pulses
0813- DO F5 1340 BNE LOOP2 at each pulse width.
0815- C6 01 1350 DEC PULSWDH Shrink pul se width
0817- DO EF 1360 BNE LOOPl to limit of zero.
0819- 60 1370 RTS

1380 *
1390 *
1400 * Multi-Swooper
1410 *

081A- A9 OA 1420 SWOOP2 LDA #$A Number swoops
081C- 85 02 1430 STA SWOOP CT Save it.
081E- 20 00 08 1440 LOOP4 JSR SWOOP Do swoop.
0821- C6 02 1450 DEC SWOOP CT Decrement the swoop count .
0823- DO F9 1460 BNE LOOP4 Not done, do more.
0825- 60 1470 RTS

Using Sound in Your Programs I 117

The number of swoops, or shots generated is set up in line 1210 of the program.
In the next line, 1220, the width of the first pulse is set. Next, this width is stored
temporarily in the accumulator, while the delay is being implemented (lines 1230
to 1250). After the delay, the original value that was in the X-register is restored
(line 1260) and the speaker is toggled (line 1270).

Once the speaker has been toggled, the width of the pulse is incremented by one
(line 1280) and a comparison is made to see if the maximum pulse width has been
reached (line 1290). If not, the program jumps back to line 1230 to generate the
delay forthe next pulse. If the maximum pulse width has been reached, the number
of shots is reduced by one (line 1310) until all have been generated.

C030-

0800- AO OA
0802- A2 40
0804- 8A
0805- CA
0806- DO FD
0808- AA
0809- AD 30
080C- E8
080D- EO CO
080F- DO F3
0811- 88
0812- DO EE
0814- 60

1000 *************************************
1010 *** ***
1020 *** LASER SWOOP 2 ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (C) 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *************************************
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
1180 SPEAKER .EQ $C030
1190 *
1200 *
1210
1220 LOOPl
1230 LOOP2
1240 LOOP3
1250
1260

co 1270
1280
1290
1300
1310
1320
1330

LDY #$A
LDX #$40
TXA
DEX
BNE LOOP3
TAX
LDA SPEAKER
INX
CPX #$CO
BNE LOOP2
DEY
BNE LOOPl
RTS

Number of shots.
Pulse width of firs t pulse.
Start a pulse within a shot.
Delay for one pulse.

Toggle the speaker.

Width of last pulse.

Done shooting?
No .

As with the last program, you should do some experimenting with this one too.
The first thing you ought to do is try changing the values used as the minimum and
maximum pulse widths (lines 1220 and 1290). You might also want to try changing
the number of swoops generated (line 1210). Finally, you could try changing the
direction of the changing pulse from an increasing width to a decreasing with. This
can be done by changing the INX in line 1280 to a DEX.

Fifteen bytes to an alarm signal
Another sound effect that can come in quite handy is a siren generating routine.

It may be used as part of an alarm routine, or a simulation game where emergency
vehicle sirens are required.

118 I Chapter 6

The SIREN program presented here is very short, only fifteen bytes long, but
will produce a wailing siren sound that repeatedly starts at a low frequency and
goes higher until an upper limit is reached. Then it starts all over again.

The program starts on line 1180, where the X-register is loaded with a random
value from location TEMP ($2FF). Next the speaker is toggled (line 1190). You'll
notice, that while we have generally used an LDA instruction to toggle the speaker,
here the BIT instruction is used. The program executes a delay based on the the
value stored in the X-register (lines 1200 and 1210). Because the time delay gener
ated is constantly shrinking, the frequency is constantly increasing. After that, the
value in TEMP is reduced by one (line 1220) and the program jumps back to the
beginning using a relative branch (lines 1230 and 1240). This makes the program
independent of memory position.

02FF
C030-

0800- AE FF 02
0803- 2C 30 CO
0806- CA
0807- DO FD
0809- CE FF 02
OSOC- BS
OSOD- 50 Fl

1000 *************************************
1010 *** ***
1020 *** SIREN PROGRAM ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
1140 TEMP .EQ $2FF
1150 SPEAKER .EQ $C030
1160 *
1170 *
1180 START
1190
1200 LOOP
1210
1220
1230
1240

LDX TEMP
BIT SPEAKER
DEX
BNE LOOP
DEC TEMP
CLV
BVC START

Initialize the X-register.
Toggle the speaker.
Decrement the X-register
until it equals zero.
Decrement TEMP.
Go back to
the beginning.

The Apple sound hardware, unlike the hardware in other computers, is only
capable of generating one tone at a time. So, if you want to generate more than one
tone at the same time, you can't. Nevertheless, I'm sure most of you have heard
programs that produce what appears to be multi-tone sounds. This is done by
playing the sounds one after the other in quick succession and repeating the se
quence several times. This fools the ear into thinking that the sounds occurred
simultaneously. By using this technique, and generating the proper frequencies, it
is possible for us to write a program that will simulate the tones generated by a
Touch-Tone keypad, such as those found on telephones.

Simulate a Touch-Tone generator with your Apple
The 1DUCH-1DNE SIMULAIDR program begins on line 1350 with a routine

called TWOIDNE. While the quality of the tones produced is not good enough to

Using Sound in Your Programs I 119

use with the telephone system, it's good enough for demonstration purposes. This
routine contains a loop that first plays the low tone and then the high tone and is
repeated ten times. The number of repetitions is determined by the value stored in
CHRDTIM in lines 1350 and 1360.

The particular two tones that are generated are determined by what the value in
BUT1DN is. In line 1370, the X-register is loaded with the value of the button
pressed (from 0 to 9) and used as an index into two tables that contain the data for
generating the low and high tones (lines 1380 and 1400). After the appropriate data
are retrieved, the program jumps to a subroutine (lines 1390 and 1410) that actually
generates and plays the tones through the speaker. After one pair of tones have been
played through the speaker, the program loops back to line 1370 and plays them
again until the process has been repeated ten times (lines 1420 to 1440).

A 12-key Touch-Tone keypad uses 7 basic frequencies that are combined in a
variety of ways to produce twelve tone pairs. When the program retrieved tone data
from the WIDNE and HI1DNE tables in lines 1380 and 1400, the information it
retrieved was merely a number from 0 to 6 that determined which of the seven
tones was to be generated. When the program jumps to the ONE1DNE routine
from lines 1390 and 1410, this number from 0 to 6 is still in the accumulator. The
first thing that ONE1DNE does is to store this value in the Y-register, where it will
be used as an index into a second set of data tables that determine the time required
for each half cycle (up time and down time) and the number of half cycles to be
generated. Lines 1520 to 1570 pick up the variables from the three tables and stores
them in three page zero locations for use later.

The next subroutine, PLAY, is the one that actually produces sound in the
speaker. It contains two identical routines (lines 1580 to 1640 and lines 1650 to
1710). One handles the up time and one the down time. The purpose of having two
routines, is to be able to more closely approximate the desired frequency. For
example, if the loop count we ought to use to get the desired frequency is 104. 5, we
could use an up time of 104 and a down time of 105; this makes the total time for the
full cycle correct. Line 1640 has a redundant BEQ instruction, because if it is
eliminated, the program will still go to LOOP3. The reason for this redundant
instruction is to make the loop times for UPTIME and DWNTIME exactly the
same. In most cases, the up time and the down time half cycles will be the same. In
fact you can see this is so by looking at the data tables for both in lines 1940 and
1950. You'll see that except for the fourth entry in the table (an entry consists of two
digits) all the data are exactly the same.

The 1DUCH-1DNE SIMULA1DR program should be called with the number
of the button pressed in location BUT1DN. When this program was originally
developed, it was part of an Applesoft program that was used as a telephone
demonstration. The screen showed a Touch-Tone pad and as the user pressed one
of the digits on the keyboard, the corresponding button on the screen would light
up (display in the inverse mode). Then the Applesoft program called this machine
language program to produce the twin-tone sound that the telephone makes. Since
the Applesoft program is not included here, a short routine to drive the 1DUCH-

1

120 I Chapter 6

1DNE SIMULAIDR is included. This routine starts on line 1790 and is called
PU SHALL, because it simulates the pushing of all of the telephone buttons, one
after the other.

The routine starts out by storing a zero in location BUTIDN and then doing a
subroutine jump to TWOIDNE, the main simulator routine (lines 1790 to 1810).
Next, a short waiting period is set up to produce a slight delay between simulated
button presses (lines 1820 and 1830) and then the value in BUTIDN is incremented
by one and checked to make sure it ia less than 10 (lines 1840 to 1860). This
continues until all buttons have been pressed.

009D-
009E-
009F
OOAO
OOE7-
C030-
FCA8-

0800- A9 OA
0802- 85 AO ·
0804- A6 E7
0806- BD 6E
0809- 20 17
080C- BD 78
080F- 20 17
0812- C6 AO
0814- DO EE
0816- 60

0817- A8

1000 *************************************
1010 *** ***
1020 *** TOUCH-TONE SIMULATOR ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (C) 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *************************************
1120 *
1130 *
1140 *
1150 *
1160 * EQUATES
1170 *
1180 DWNTIME
1190 UPTIME
1200 LENGTH
1210 CHRDTIM
1220 BUTTON
1230 SPEAKER
1240 WAIT
1250 *
1260 *

.EQ $9D

.EQ $9E

.EQ $9F

.EQ $AO

.EQ $E7

.EQ $C030

.EQ $FCA8

1270 * This is the main program loop where
1280 * the low and the high tones are played
1290 * alternat ely 10 times to make it sound
1300 * like both tones are being played
1310 * simultaneously. The particular set
1320 * of tones played are determined by the
1330 * value of BUTTON.
1340 *
1350 TWOTONE LDA #$A Set up loop for 10 times.
1360 STA CHRDTIM
1370 LOOP1 LDX BUTTON

08 1380 LDA LOTONES,X
08 1390 JSR ONETONE
08 1400 LDA HITONES,X
08 1410 JSR ONETONE

1420 DEC CHRDTIM
1430 BNE LOOP1
1440 RTS
1450 *
1460 *

Get the digit pressed.
Get the data for the low tone.
Play it.
Get data for high t one.
Play it.
Reduce count until the
tone pair is played 10 times.

1470 * This routine toggles the speaker for
1480
1490
1500
1510

* LENGTH number of half-cycles which are
* controlled by UPTIME or DWNTIME.
* ONETONE TAY Use LO/HITONE data as index.

0818- B9 59 08 1520 LDA DNTMTAB,Y Get down-time data
081B- 85 9D 1530 STA DWNTIME and store it.
081D- B9 60 08 1540 LDA UPTMTAB,Y Get up-time data
0820- 85 9E 1550 STA UPTIME and store it.

0822- B9 67 08
0825- 85 9F
0827- A4 9E
0829- AD 30 CO
082C- C6 9F
082E- FO 13
0830- 88
0831- DO FD
0833- FO 00
0835- A4 9D
0837- AD 30 CO
083A- C6 9F
083C- FO OS
083E- 88
083F- DO FD
0841- FO E4
0843- 60

0844- A9 00
0846- 8S E7
0848- 20 00
084B- A9 00
084D- 20 A8
08SO- E6 E7
08S2- AS E7
08S4- C9 OA
08S6- 90 FO
08S8- 60

08

FC

08S9- 8E 80 74
08SC- 68 S1 49
085F- 42
0860- 8E 80 74
0863- 69 S1 49
0866- 42
0867- 14 12 10
086A- OF 20 1D
086D- 1A
086E- 03 00 00
0871- 00 01 01
0874- 01 02 02
0877- 02
0878- OS 04 OS
087B- 06 04 OS
087E- 06 04 OS
0881- 06

Using Sound in Your Programs I 121

1560
1570
1S80 PLAY
1S90
1600
1610
1620 LOOPZ
1630
1640
16SO LOOP3
1660
1670
1680
1690 LOOP4
1700
1710
1720 RETURN
1730 *
1740 *

LDA LENTABL,Y
STA LENGTH
LDY UPTIME
LDA SPEAKER
DEC LENGTH
BEQ RETURN
DEY
BNE LOOP2
BEQ LOOP3
LDY DWNTIME
LDA SPEAKER
DEC LENGTH
BEQ RETURN
DEY
BNE LOOP4
BEQ PLAY
RTS

Get number of half cycles
and store i t .
Use UPTIME as counter.
Toggle the speaker.
Reduce LENGTH until done.
Done, return to caller.
Delay by UPTIME.

This is for timing symmetry .
Use DWNTIME as counter.
Toggle the speaker.
Reduce LENGTH until done.
Done, return to caller.
Delay by DWNTIME.

Play next half cycle.

17SO * This routine automatically simulates
1760 * the pushing of each of the buttons
1770 * from 0 to 9.
1780 *
1790 PUSHALL
1800
1810 LOOPS
1820
1830
1840
18SO
1860
1870
1880
1890 *
1900 *

LDA #$0
STA BUTTON
JSR TWOTONE
LDA #$0
JSR WAIT
INC BUTTON
LDA BUTTON
CMP #$A
BCC LOOPS
RTS

Simulate button 0
being pressed.
Generate the tone.
Delay between pressing
of buttons.
Get ready for next button.
Get next button pressed.
Did we reach 10?
No, generate tone.
Yes, that's all'

1910 * These are the various data tables that
1920 * are required by this program.
1930 *

1940 DNTMTAB .HS 8E807468S14942

19SO UPTMTAB .HS 8E807469S14942

1960 LENTABL .HS 1412100F201D1A

1970 LOTONES .HS 03000000010101020202

1980 HITONES .HS OS040S06040S06040S06

Let your computer send Morse code like a pro
For those of you who have an interest in Ham radio, this next program should be

of considerable interest. Like so many of the programs in this chapter, it was
written by Bob Sander-Cederlof. I've made one or two slight modifications and
rearranged the source code a bit, but the bulk of the work was Bob's. This program
works by stealing control away from the output and so, not surprisingly, the pro
gram starts out by setting up the output hooks to point to the appropriate part of this
program (lines 1320 to 1400).

The replacement output program starts on line 1500, where the character that is

122 I Chapter 6

Send Morse Code like a pro with your Apple computer.

being output is tested to see if it is a letter or a number. The reason for this test is
that not all of the ASCII set has been encoded for this program, just the letters and
numbers. But if you wish to extend this to include the punctuation as well, after
seeing how it's done here, you'll find it very easy to do. If you're going to do this, it
will be necessary to change the $BO in line 1500 to $AO and add the extra codes to
the code table (lines 2390 to 2530). If it is determined that the character to be
printed is not a letter or a number, and thus not in the code table, the program
branches to line 1550, where the character is output to the screen.

If the character is a letter or number, it is temporarily stored on the stack, while
the program jumps to the SENDCHR routine in line 1620. After it comes back
from that subroutine jump, the character is restored from the stack and then printed
out to the screen (lines 1540 and 1550).

The heart of this program is the subroutine called SENDCHR which starts on
line 1620. Since the X and Y registers are going to be used by this routine, their
contents are saved at entry (lines 1620 and 1630) and will be restored before
exiting. Next, the character that was entered is normalized by subtracting $BO from
it (line 1650). This allows the resulting number to be used as an index (line 1660)
into the CODES table (line 1670) to retrieve the information needed to generate the
appropriate sequences of dits and dahs (dots and dashes).

The number retrieved from the CODES table contains two pieces of informa-

Using Sound in Your Programs I 123

tion: the number of code elements (the total number of dots and dashes), which is
stored in the three low-order bits, and the actual code elements (dots and dashes)
themselves, which are stored in the five high order bits. The number of code
elements is retrieved from the table data by ANDing the data with $7. If the result
of this ANDing is zero, there is no code for the character in the table and the
program branches to a routine (line 1700) that generates three character spaces and
restores the previously saved registers. By the way, when we talk about character
spaces and element spaces here, we're referring to spaces in time, or time delays
between characters and elements.

If the element count is not zero, it is stored in a location called COUNT (line
1710). Once this is done, the contents of CODE, which contains the original data
retrieved from the CODES table, is shifted left one bit, causing the high-order bit
to be placed into the CARRY location of the 6502 microprocessor (line 1720). The
dits and dahs (or dots and dashes) or Morse code, are represented here as bits of
zero and one, respectively. So if the value in the CARRY bit is a zero (line 1730) a
dit is generated. If it's a one however, a dah is generated by calling the dit routine
three times in succession, thus producing a longer beep (lines 1740 to 1760).
Whether a dit or a dah was generated, the next thing that happens is a space (time
delay), equal to the time it takes to send a dit, is generated (line 1770). Since this is
a space between elements, it is referred to as an 'element space'.

Now that the program has sent one element, the element count is reduced by one
(line 1780) and the program loops back to handle the remaining elements (line
1790). When all of the elements of a character have been sent, a space, equal to
three element spaces - or the amount of time required to send a dash - is
generated (line 1800). Finally, the X and Y registers are restored and control is
returned to the calling program (lines 1810 to 1830).

The next subroutine SPACE! on line 1980, generates the required spacing be
tween elements of a character (the dits and dahs) and between characters too.
Element spacing is handled by SPACE2, while the space between characters,
which is three times longer than the space between elements, is done by SPACE I,
which simply does a subroutine jump to SPACE2 twice (lines 1980 and 1990), and
falls into it for the third time.

SPACE2 starts on line 2000 where it loads the Y-register with the value for the
speed of transmission. Next, the X-register is loaded with the value of the pitch
(line 2010). Since this routine is not supposed to produce any sound, a dummy
location (the keyboard) is toggled instead of the speaker (line 2020). Next, the
pitch delay loop is executed (lines 2030 and 2040). After that, the speed constant is
decremented until it reaches zero, when an RTS instruction is executed (lines 2050
to 2070).

The DIT routine (lines 2150 to 2220) is identical to the SPACE2 routine except
the speaker is toggled (line 2170) instead of the dummy location in the previous
routine.

If the code being transmitted is too fast, you can slow it down by increasing the
value of either SPEED or PITCH or both.

124 I Chapter 6

004C-
0050-
0078-

0036-
03DO-
03EA
COOO
C030-
FDFO-

0800- A9 13
0802- AO 08
0804- 85 36
0806- 84 37
0808- AD DO 03
080B- C9 4C
080D- DO 03
080F- 20 EA 03
0812- 60

0813- C9 BO
0815- 90 05
0817- 48
0818- 20 lF 08
081B- 68
081C- 4C FO FD

081F- 8E 81 08
0822- 8C 82 08
0825- 38
0826- E9 BO

1000 *************************************
1010 *** ***
1020 *** MORSE CODE GENERATOR ***
1030 *** ***
1040 *** REPRINTED FROM THE ***
1050 *** FEBRUARY 1981 ISSUE OF ***
1060 *** APPLE ASSEMBLY LINE ***
1070 *** COPYRIGHT (C) 1981 BY ***
1080 *** S-C SOFTWARE ***
1090 *** ALL RIGHTS RESERVED ***
1100 *** ***
1110 *** MODIFIED BY JULES H. GILDER ***
1120 *** ***
1130 *************************************
1140 *
1141 *
1142 *
1143 * CONSTANTS
1144 *
1145 JUMP
1146 PITCH
1147 SPEED
1150 *
1160 *

.EQ $4C

.EQ $50

.EQ $78

1170 * EQUATES
1180 *
1190 CSWL
1200 WARMDOS
1210 CONNECT
1220 DUMMY
1230 SPEAKER
1240 COUTl
1250 *
1260 *

.EQ $36

. EQ $3DO

.EQ $3EA

.EQ $COOO

. EQ $C030

. EQ $FDFO

1270 * This subroutine steals control away
1280 * from the normal output routine and
1290 * directs all outputted characters to
1300 * this program.
1310 *
1320 SETUP
1330
1340
1350
1360
1370
1380
1390
1400 NODOS
1410 *
1420 *

LDA #MORSE
LDY /MORSE
STA CSWL
STY CSWL+l
LDA WARMDOS
CMP #JUMP
BNE NODOS
JSR CONNECT
RTS

Get the address of the
start of the program
and store it in
the output hooks.
Check if DOS
present.
No, return.
Yes, connect
Return.

to DOS .

1430 * This routine checks to see if the
1440 * character being sent i s a letter or a
1450 * number . If it i sn't the character i s
1460 * just printed to the screen. If it i s
1470 * the character is sent i n Morse Code
1480 * and then printed to the screen.
1490 *
1500 MORSE CMP #$BO
1510 BCC PRNTCHR
1520 PHA
1530 JSR SENDCHR
1540 PLA
1550 PRNTCHR JMP COUTl
1560 *
1570 *

I s it alphanumeric?
No, print it.
Yes, save it.
Send it in Morse.
Retrieve the character .
Print it.

1580 * This is the routine that converts the
1590 * character to Morse Code and drives
1600 * the speaker.
1610 *
1620 SENDCHR
1630
1640
1650

STX SAVEX
STY SAVEY
SEC
SBC #$BO

Save the X and Y
r egi s t ers .
Normalize by
subtracting $BO.

0828- AA
0829- BD 8S 08
082C- 8D 84 08
082F- 29 07
0831- FO 23
0833- 8D 83 08
0836- OE 84 08
0839- 90 06
083B- 20 73 08
083E- 20 73 08
0841- 20 73 08
0844- 20 6S 08
0847- CE 83 08
084A- DO EA
084C- 20 SF 08
084F- AE 81 08
08S2- AC 82 08
08SS- 60
08S6- 20
08S9- 20
08SC- 4C

SF 08
SF 08
4C 08

1660
1670
1680
1690
1700
1710
1720 LOOPl
1730
1740
17SO
1760 MAKEDIT
1770
1780
1790
1800 LOOP2
1810
1820
1830
1840 THRESPC
18SO
1860
1870 *
1880 *

TAX
LDA CODES,X
STA CODE
AND #$7
BEQ THRESPC
STA COUNT
ASL CODE
BCC MAKEDIT
JSR DIT
JSR DIT
JSR DIT
JSR SPACE2
DEC COUNT
BNE LOOPl
JSR SPACEl
LDX SAVEX
LDY SAVEY
RTS
JSR
JSR
JMP

SPACEl
SPACEl
LOOP2

Using Sound in Your Programs I 125

Use the result as an
index into CODES.
Get the
element count.
No code.
Save the count.
Put next element
Make a dit.
Make a dah (from
3 dits).
Make a dit.
Element space.
Decrement element
Next element.
Character space.
Restore X and
Y registers.
Return.

into carry bit.

count.

Send character
Send character
Send character

space.
space.
space and exit.

1890 * This subroutine generates the
1900 * required spacing between the elements
1910 * of a character (dits and dahs) and
1920 * also between characters. Element
1930 * spacing is handled by SPACE2 while
1940 * the space between characters (which
19SO * is 3 times longer than the space
1960 * between elements) is done by SPACEl.
1970 *

08SF- 20 6S
0862- 20 6S
086S- AO 78
0867- A2 SO
0869- AD 00
086C- CA
086D- DO FD
086F- 88
0870- DO FS
0872- 60

08 1980 SPACEl JSR SPACE2
JSR SPACE2

SPACE2 LDY #SPEED
GTPITCH LDX #PITCH

Do an element space.
Do an element space.
Make believe it's
sending Morse

78
so

08 1990
2000
2010

co 2020
2030 LOOP3
2040

LDA DUMMY
DEX

But toggle the keyboard
instead of the speaker.

20SO
2060
2070
2080 *
2090 *

BNE LOOP3
DEY
BNE GTPITCH
RTS

2100 * This subroutine is identical
2110 * previous one, but instead of
2120 * the keyboard, it toggles the
2130 * generates a sound.
2140 *

to the
toggling
speaker and

21SO DIT Get the speed.

30 co

0873- AO
087S- A2
0877- AD
087A- CA
087B- DO FD
087D- 88
087E- DO FS
0880- 60

2160 LOOP4
2170

LDY #SPEED
LDX #PITCH
LDA SPEAKER
DEX

Get the pitch.
Toggle the speaker.
Decrement the pitch
delay.

0881- 00
0882- 00
0883- 00
0884- 00

2180 LOOPS
2190
2200
2210
2220
2230 *
2240 *

BNE LOOPS
DEY
BNE LOOP4
RTS

Decrement the speed
delay.

22SO * These are temporary storage locations
2260 * used by the program.
2270 *
2280 SAVEX
2290 SAVEY
2300 COUNT
2310 CODE
2320 *
2330 *

BRK
BRK
BRK
BRK

2340 * These are the code tables used to
23SO * convert the letters into Morse Code.
2360 *
2370 * 0, 1 through 9
2380 *

126 I Chapter 6

088S- FD 7D 3D
0888- lD OD OS
088B- 8S CS ES
088E- FS 2390 CODES .HS FD7D3D1DODOS8SCSESFS
088F- 00 00 00
0892- 00 00 00 2400 .HS 000000000000

2410 *
2420 *
2430 * @, A through M
2440 *

089S- 00 42 84
0898- A4 83 01
089B- 24 C3 04
089E- 02 24SO .HS 004284A4830124C30402
089F- 74 A3 44
08A2- C2 2460 .HS 74A344C2

2470 *
2480 *
2490 * N through Z
2SOO *

08A3- 82 E3 64
08A6- D4 43 03
08A9- 81 23 14
08AC- 63 2S10
08AD- 94 B4 C4 2S20
08BO- 00 00 00
08B3- 00 00 00 2S30

.HS 82E364D4430381231463

. HS 94B4C4

.HS 000000000000

How to copy any cassette program
Even though most Apple owners have at least one disk drive, occasionally the

need arises to duplicate an Apple cassette program. If the program is unprotected
(yes there are cassette protection schemes too) and only one program is on the
cassette, it's a relatively simple matter to load the program into memory and then
save it out again on a fresh cassette. However, if even one of these conditions is not
true (e.g. there is more than one program one the cassette - possibly a mixture of
BASIC and machine language programs - and/or the program is protected) then it
is much easier to use the CASSETTE DUPLICA1DR program to copy the cas
sette.

The program starts out by printing out the title of the program (lines 1270 to
1330) and then branches to line 1450 where it scans the keyboard to see if a key has
been pressed. Whether or not a key has been pressed, it takes the value it got from
the keyboard location and tests it to see if it is equal to the value generated by the
ESCape key (line 1460) . If it is, the program toggles the keyboard strobe and
returns to the caller (line 1470).

If the ESCape key has not been pressed, the program does a subroutine jump to a
monitor routine called RDBIT ($FCFD) which reads one bit of data off the tape
(line 1480) . Next, the speaker is toggled (line 1490) so the user gets some audible
feedback on what's happening and then the cassette output port is toggled so the
data is written out to the new cassette. Finally, the program jumps back to the
beginning to check the keyboard again and then read the next bit off the tape (line
1510).

This program requires the use of two tape recorders, one to read the data from
and one to write the data to . Even though the Apple was only designed for use with

Using Sound in Your Programs I 127

one recorder, the two can be used as long as the input lead is connected to one
recorder and the output lead to the other. Cassettes produced in this manner are as
good as the original and do not suffer any multiple generation degradation (e.g. the
copy is worse than the original and a copy of a copy is even worse). The reason for
this is the data are being read into the computer and a new version of the same data
is being written out, just as though it was an original.

The monitoring capability through the Apple's internal speaker is very impor
tant because it lets you hear what's on the tape you're duplicating so that you will
know when you have reached the end of the record data. When that happens, all
you have to do is press the ESCape key to exit the program.

COOO
COlO
C020-
C030-
FC58-
FCFD
FDOC
FDED-

0800- 20 58 FC
0803- AO 00
0805- B9 27 08
0808- FO 06
080A- 20 ED FD
080D- C8
OBOE- DO F5

0810- AD 00 CO
0813- C9 9B
0815- FO OC
0817- 20 FD FC
081A- AD 30 CO
0810- AD 20 CO
0820- 4C 10 08
0823- 2C 10 CO
0826- 60

1000 *************************************
1010 *** ***
1020 *** CASSETTE DUPLICATOR ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 * EQUATES
1130 *
1140 KEYBD
1150 KBDSTRB
1160 CASSOUT
1170 SPEAKER
1180 HOME
1190 RDBIT
1200 RDKEY
1210 GOUT
1220 *
1230 *

.EQ $COOO

.EQ $C010

.EQ $C020

.EQ $C030

.EQ $FC58

.EQ $FCFD

.EQ $FDOC

.EQ $FDED

1240 * This section prints out the title
1250 * and copyright notice.
1260 *
1270
1280
1290 LOOP
1300
1310
1320
1330
1340 *

JSR HOME
LDY #$0
LDA TEXT,Y
BEQ START
JSR GOUT
INY
BNE LOOP

Clear the screen.
Initialze character
Get a character.
Done, run program.
Print character.
Increment pointer.
Get next character .

1350 * This section constantly monitors the
1360 * keyboard to see if the ESCape key is
1370 * being pressed. If not it reads in
1380 * data from a cassette on one tape
1390 * recorder and writes it out to another
1400 * tape recorder. At the same time, it
1410 * also toggles the speaker so that you
1420 * can listen to the tape as it is being
1430 * and will know when it is done.
1440 *
1450 START
1460
1470
1480
1490
1500

Read the keyboard.
Is it ESCape?
Yes, quit.
No, read tape.
Toggle speaker.
Toggle cassette.

pointer.

copied

1510
1520 QUIT
1530

LDA KEYBD
CMP #$9B
BEQ QUIT
JSR RDBIT
LDA SPEAKER
LDA CASSOUT
JMP START
BIT KBDSTRB
RTS

Read next bit from tape.
Clear keyboard strobe.
Return to caller.

128 I Chapter 6

1S40 *
lSSO *
1S60 * This is the text printed out by
1S70 * the program.
1S80 *

0827- C3 Cl D3
082A- D3 CS D4
082D- D4 CS AO
0830- C4 DS DO
0833- CC C9 C3
0836- Cl D4 CF
0839- D2 1S90 TEXT . AS -"CASSETTE DUPLICATOR"
083A- 8D 8D 1600 .HS 8D8D
083C- C2 D9 AO
083F- CA DS CC
0842- cs D3 AO
084S- C8 AE AO
0848- C7 C9 CC
084B- C4 CS D2 1610 .AS -"BY JULES H. G.ILDER"
084E- 8D 1620 .HS 8D
OB4F- C3 CF DO
OBS2- D9 D2 C9
OBSS- C7 CB D4
OBSB- AO AB C3
OBSB- A9 AO Bl
OBSE- B9 BB B2 1630 .AS -"COPYRIGHT (C) 19B2"
OB61- BD 1640 .HS BD
OB62- Cl cc cc
OB6S- AO D2 C9
OB6B- C7 CB D4
OB6B- D3 AO D2
OB6E- CS D3 CS
OB71- D2 D6 CS
OB74- C4 16SO .AS -"ALL RIGHTS RESERVED"
OB7S- BD BD BD
OB7B- BD 00 1660 .HS BDBDBDBDOO

Chapter7

LEARNING 10USE1HE AMPERSAND

While it's possible to do anything in machine language that you can do in
Applesoft, it may not always be advisable. Sometimes it may be faster and easier to
develop most of your program in Applesoft, and only use a machine language
routine to speed up time-critical sections of the program. This is frequently done
with business software so that the user can customize it to his own needs by just
modifying the Applesoft program, but still have the speed he needs in, for exam
ple, sorting routines.

Because the designers of the Applesoft language foresaw the probable need to
couple Applesoft with machine language routines, they provided several ways of
doing it, including CALL, USR (X) and &. It is this last method, using the
ampersand(&), that we are going to discuss in this chapter.

One of the tokens, or reserved words, in Applesoft is not a word but a single
character, the ampersand(&), also known as the 'and' sign. This Applesoft com
mand works just like the PRINT command or any other Applesoft command.
When the Applesoft interpreter sees an ' & ', it jumps to the routine that handles it.
The big difference between this command and most of the other Applesoft com
mands is that the address the computer jumps to for this command is not in any of
the Applesoft RO Ms, as the others are, but is in page three, specifically at address
$3F5. There is no machine language code to process the command, only three
reserved locations which can be used to store a command to jump to some other
location in memory to the desired subroutine. Thus, what happens when an ' & ' is
encountered is the program jumps to $3F5, where it expects to find another jump
command.

Data can be~ with the ampersand too
While the primary purpose of the ampersand is to transfer control to a machine

language program, it should be noted that it is also possible to transfer data, with
the ampersand command. There is a short routine, called CHRGET, in page zero
that starts at location $Bl that is used to interpret the lines of an Applesoft pro
gram. We'll go into a deeper discussion of this later on in the book, but suffice it to
say, that as each command is encountered, a text pointer is advanced to interpret
each token or character. One other feature of this routine is that it ignores spaces.

· After the routine has interpreted a character or token - such as the ampersand
- it leaves the text pointer pointing to the character that follows it if there is one and

129

130 I Chapter 7

loads that character into the accumulator. By taking advantage of this fact, and
using some of the routines built into the Applesoft RO Ms, it is possible to pass a
wide variety of data to machine languages programs that are called via the amper
sand. The first program we are going to look at- HEX/DECIMAL/HEX CON
VERTER- passes both a symbol (a dollar sign) and a number.

003E-
0050-
OOBl-
0200-
03F5-
DD67-
E199-
E752-
ED24-
FDDA
FDED
FF A 7 -

1000 *************************************
1010 *** ***
1020 *** HEX/DECIMAL/HEX CONVERTER ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

.OR $300

1150 * EQUATES
1160 *
1170 A2L
1180 LINNUM
1190 CHRGET
1200 IN
1210 AMPERSD
1220 FRMNUM
1230 IQERR
1240 GETADR
1250 LINPRT
1260 PRBYTE
1270 GOUT
1280 GETNUM
1290 *
1300 *
1310 *

.EQ $3E

.EQ $50

.EQ $Bl

.EQ $200

.EQ $3F5

. EQ $DD67

.EQ $E199

.EQ $E752

.EQ $ED24

.EQ $FDDA

.EQ $FDED

. EQ $FFA7

1320 * This is where the ampersand (&) vector
1330 * jump is set up.
1340 *
1350
1360
1370

LDX #$4C Get JMP op code and 0300- A2 4C
0302- A9 10
0304- AO 03
0306- 8E FS
0309- 8D F6
030C- 8C F7
030F- 60

03 1380
03 1390
03 1400

LDA #START
LDY /START
STX AMPERSD
STA AMPERSD+l
STY AMPERSD+2
RTS

the low and high bytes
of START's address and
store them in locations
$3FS, $3F6 and $3F7 .

0310- C9 24
0312- FO 17
0314- 20 67 DD
0317- 20 52 E7
031A- A9 A4
031C- 20 ED FD
031F- AS 51
0321- FO 03
0323- 20 DA FD

1410
1420 *
1430 *
1440 * This part of the program checks to
1450 * see if the character immediately following
1460 * the ampersand (&) was a dollar sign.
1470 * If it was, control is passed to the
1480 * routine that converts from hexadecimal
1490 * to decimal. Otherwise the number is
1500 * decimal and converted to hexadecimal.
1510 *
1520 START
1530
1540
1550
1560
1570
1580
1590
1600

CMP #$24
BEQ HEXIN
JSR FRMNUM
JSR GETADR
LDA #$A4
JSR GOUT
LDA LINNUM+l
BEQ PRINTLO
JSR PRBYTE

Is it a dollar sign ($)?
Yes, convert hex to decimal .
No, evaluate number or formula.
Convert to integer form.
Output a dollar sign($).

Get high byte.
If zero, get low byte.
Otherwise print high byte.

Learning To Use The Ampersand I 131

0326- AS SO 1610 PRINTLO LDA LINNUM Get low byte.
0328- 4C DA FD 1620 JMP PRBYTE Print it.

1630 *
1640 * 16SO * This routine handles the hexadecimal
1660 * to decimal conversion.
1670 *

032B- AO 00 1680 HEXIN LDY #$0 Zero offset index.
032D- 20 Bl 00 1690 HEXIN2 JSR CHRGET Get the next character.
0330- FO 08 1700 BEQ PUTBUF Store in buffer and convert.
0332- 49 80 1710 EOR #$80 Set high bit.
0334- 99 00 02 1720 STA IN,Y Store in input buffer.
0337- C8 1730 INY Increment offset index.
0338- DO F3 1740 BNE HEXIN2 Get next character.
033A- 99 00 02 17SO PUTBUF STA IN,Y Store zero in buffer.
033D- A8 1760 TAY Zero offset index.
033E- 20 A7 FF 1770 JSR GETNUM Convert ASCII to hex.
0341- A6 3E 1780 LDX A2L Store low byte in X- r egister .
0343- AS 3F 1790 LDA A2L+l Store high byte in Y-register.
034S- co 06 1800 CPY #$6 Check if number too large.
0347- 90 03 1810 BCC INRANGE No, it's okay.
0349- 4C 99 El 1820 JMP IQERR Yes, print error message.
034C- CO 03 1830 INRANGE CPY #$3 Converting only 1 byte?
034E- BO 02 1840 BCS PRINTIT No, do both.
03SO- A9 00 18SO LDA #$0 Yes, do just one .
03S2- 4C 24 ED 1860 PRINTIT JMP LINPRT Convert and print numbe r.

Converting between decimal and hexadecimal
As you work more and more with machine-language programs and write rou

tines that can be used with Applesoft, you will frequently find the need to convert
numbers from decimal to hexadecimal and vice versa. Perhaps you've written a
program that starts at memory location $9400 and you want to know what the
decimal equivalent is so that you can call it from a BASIC program. Or perhaps one
of the functions your BASIC program does is display a section of memory with its
contents in hexadecimal notation.

You can do all of this in BASIC if you choose to, but it will significantly slow
down your program. The alternative is to use a machine-language program to do
the conversions for you. That's where the HEX/DECIMAL/HEX CONVERTER
program comes in. This program will allow you to convert numbers in either
direction. An added advantage of the program is that it does not have to be used in
an Applesoft program only, but can also be used in the immediate mode.

The program starts with a short routine (line 1350), whose only purpose is to
activate the ' & 'jump locations. These jump locations are also referred to as jump
'vectors'. When the program is BRUN or a CALL 768 is issued, the program loads
locations $3F5, $3F6 and $3F7 with a jump op code and the address of the con
verter part of the program, which starts on line 1520.

Since we know that the accumulator contains the character following the amper
sand, if there is one, the first thing that our program does is to test the contents of
the accumulator and see ,if the character there is a dollar sign. If it is, that's a sign to
the program that the number that follows is a hexadecimal number and it is to be
converted to decimal. Thus, the program branches (line 1530) to the routine that
handles the hexadecimal-to-decimal conversion.

132 I Chapter 7

Using the Applesoft ROM routines

If there is no dollar sign in the accumulator, the assumption is made that what
ever follows the ampersand has a decimal value and it is to be converted to a
hexadecimal number. To do this, we use some of the routines in the Applesoft
ROMs. The first one is called FRMNUM and is located at $DD67. This routine
assumes that the text pointer from the CHRGET routine at $B 1 is pointing to the
first character of the number, variable or formula. FRMNUM takes this number,
variable or formula and converts its value into a special format called floating point
and stores this information in six special locations on page zero called the 'floating
point accumulator', which is often abbreviated to the three letters FAC. The FAC is
in locations $9D to $A2.

Getting the number into the FAC is only the first step, and the number is not
useful to us in this form. The reason is these six locations contain an exponent, four
mantissa bytes and a sign byte. In addition, the data are stored in a form known as
'excess $80'. This means that it has $80 added to it. The actual mathematics can be
a little confusing, but you shouldn't worry about it, because the folks that wrote the
Applesoft language did all the hard work for us. All we have to do is use the
routines that they wrote.

Converting floating point to integer
Once the number is in the floating point accumulator, we can use another ROM

routine to convert it into an integer number that is represented by two hexadecimal
bytes. This routine is called GETADR and is located at $E752 in the ROMs. It is
designed to take any number in the -65535 to + 65535 range, that is currently
stored in the FAC, and convert it into a two-byte integer. These two bytes will be
stored in a memory location called LINNUM and LINNUM + 1, which are also
located on page zero at $50 and $51.

GETADR is one of several routines in the RO Ms that converts numbers in FAC
to integers. Another routine called QINT at $EBF2 could also be used, but it is
limited to positive numbers only.

After the program does a JSR to GETADR (line 1550), a dollar sign is printed
out (lines 1560 and 1570) to indicate that the number being printed is a hexadecimal
number. Then the most significant byte of the number, which is stored in LIN
NUM + 1, is loaded into the accumulator and tested to see if it's zero (lines 1580
and 1590). If it is, it's discarded and the least significant, or low-order byte is put
into the accumulator and printed (lines 1610 and 1620). If the high-order byte was
not zero, it is printed (line 1600) and then the low-order byte is printed. This
subroutine returns to the caller via the RTS instruction in the PRBYTE routine.

Doing the hex to decimal conversion
Earlier, we said that if the first character following the ampersand is a dollar

sign, we knew that the number following it would be hexadecimal, and thus the

Learning To Use The Ampersand I 133

desired conversion was hexadecimal-to-decimal. The routine that does this con
version starts on line 1680, where the Y-register, which is going to be used as an
offset into the input buffer, is set to zero. Then the next character after the dollar
sign is retrieved by using the CHRGET routine at $B 1 (line 1690) . This routine
increments the text pointer and loads the next character into the accumulator. Once
there, the character is checked to see if it is a zero (line 1700). If it is, CHRGET
knows that it has reached the end of the program (or input) line from which text is
being read, and the zero is stored as-is in the input buffer (line 1750). If the
character was not a zero, it is exclusive-ORed with $80 to set the high bit (bit
number 7) and then stored in the input buffer with the high bit set (lines 1710 and
1720). By doing this, we're making it appear as if the text were entered from the
keyboard. Next the Y-register is incremented and the next character is retrieved
(lines 1730 and 1740). This process continues until all the text following the amper
sand has been placed in the input buffer or until 256 characters have been proc
essed.

Once the zero, which indicates the end of text, has been entered into the input
buffer, the Y-register is reset to zero and a routine, GETNUM, in the Apples's F8
monitor ROM is called (lines 1760 and 1770). This is a routine that gets called when
hex data are entered from the keyboard while in the monitor mode. This routine
scans the input buffer and converts the ASCII data it finds there into a hexadecimal
number. Its stores the two bytes of this number in two frequently used utility
locations A2L and A2L + 1 (often referred to as A2H) . The converted hex data,
that are stored in A2L and A2L + 1, are loaded into the X-register and the accumu
lator (lines 1780 and 1790) in preparation for its conversion and printing as a
decimal number.

The GETNUM routine does not check to see that only four hex digits are
entered. Instead, it just converts the last four digits entered. In order for us to make
sure that the number entered is not to large, we check the Y-register (line 1800),
which is incremented, by GETNUM, for each character that is retrieved from the
input buffer. We check to make sure that no more than 6 places have been used in
the input buffer. Six was chosen because we need a maximum of four for the hex
data, one for the zero and one more because the Y-register is incremented in
GETNUM, before it returns.

If more than four hex digits were entered the program jumps to the routine in the
Applesoft ROMs that prints the ILLEGAL QUANTITY error message. Other
wise, a test is made to see if only two digits, and hence one byte of data is being
converted (line 1840) . If it is only one byte, the accumulator is set to zero (line
1850), otherwise things are left as is. In any case, the program then jumps to still
another Applesoft routine, LINPRT ($ED24). This is the routine that is called
when a program is being listed and the line number has to be printed out. LINPRT
does the actual hex to decimal conversion and also prints out the number.

As you can see from the preceding explanation and from the listing, we've made
liberal use of the routines that exist in the Apple's RO Ms to cut down on the amount
of programming we would otherwise have had to do. Whenever possible, it is

134 I Chapter 7

advisable to use the routines in the ROMs. This will speed up development time
considerably. Just remember, when you do that, you tie yourself to those ROMs, so
if Applesoft routines are being used, you have to ensure that they are in the machine
and active.

Locate Applesoft program lines in memory
Did you ever see an Applesoft program with illegal line numbers (numbers

greater than 63999) and wonder how they were entered? Or perhaps you've seen
lines that have imbedded back spaces, so they look invisible when listed to the
video display, and couldn't figure out how they were entered. Or maybe you want to
use a character in your program that is not accessible from the Apple keyboard,
such as the left square bracket ([) .

If you've ever wondered just how these things are done, they're done by a
process known as 'patching', which means the line is first entered with dummy
legal characters to hold the place required for the illegal ones, and then the pro
grammer goes into the monitor mode, finds the particular line he's trying to
change, or patch, and then makes the required changes. Making the changes is
easy. The difficult part is finding just where in memory the line you're interested in
resides. Usually you have to start at the beginning of the Applesoft program and
follow the next line pointers down until you find the line you desire. This can be a
time consuming and cumbersome process, which is probably why more people
don't patch programs. But, with the next program we are going to discuss, the task
becomes trivial.

In Chapter 2 when we spoke about the Applesoft Program Line Counter, we had

Learning To Use The Ampersand I 135

a short discussion on the way a line of an Applesoft program is stored in memory.
Without repeating that discussion in det.ail, let's just review a few pertinent facts .
With ROM or language card Applesoft, program storage normally starts at loca
tion $801. The first two bytes of an Applesoft line contain a pointer to the location
in memory of the next Applesoft line. The next two bytes are reserved for the hex
representation of the line number. Then, the actual text of the line is stored with
Applesoft keywords replaced by one-byte tokens. Finally, the line is terminated
with a zero.

The program APPLESOFT LINE FINDER, takes a line number that is passed
to it by the ampersand command and uses some of the routines in the Apple ROMs
to first locate the position of the line in memory and then display the line in hex up
to and including the terminating zero byte. The program then leaves you in the
monitor mode so that you can make any changes desired in the line just displayed.

The program starts at location $2DA, which is the upper part of the input buffer.
To use it, the program is loaded and then activated by a CALL 730. SiJ?-Ce the
program is located in pages 2 and 3 of memory, it can be loaded and run at any time
during an Applesoft program's development, without affecting the Applesoft pro
gram.

The first part of the program, which starts on line 1360, clears the screen, prints
out the program title and sets up the ampersand jump locations on page three to
point to a routine that locates the Applesoft line. Immediately following this short
routine, is the text that it prints out. As in some earlier programs, the reason the text
is placed here up front, is that it is going to be used once, the first time the program
is run, and thus is expendable. So we won't have to worry about part of our
program, which is stored in the input buffer, being wiped out if a long line of text is
entered.

The actual program that finds and displays Applesoft lines starts on line 1660,
where an Applesoft routine called LINGET ($DAOC) is called. LINGET is the
routine that is used to check get the line number of an Applesoft line that is being
entered from the keyboard. It uses TXTPTR, which is the text pointer in the
CHRGET routine, and reads the number that TXTPTR is pointing to. It takes this
number, converts it to hexadecimal and stores it in LINNUM and LINNUM + 1
($50 and $51) . Because this routine is the same one that Applesoft uses to check
line numbers, it has the same limitations, namely it is only good for line numbers
up to and including 63999.

If you want to display lines grl!ater than that, the JSR LINGET should be
replaced by a JSR FRMNUM ($DD67), immediately followed by a JSR GETADR
($E752). You may recall, that we used these two routines in the previous program
to input decimal numbers that were going to be converted to hexadecimal numbers.

Once the line number has been converted to hex and stored in LINNUM, an
other Applesoft ROM routine, FNDLIN ($D61A) , is called (line 1670) . FNDLIN
will start at the beginning of the Applesoft program and search for the line number
that is currently stored in LINNUM (and of course LINNUM + 1). If the line is
found, its beginning address is stored in two page zero locations called LOWTR

136 I Chapter 7

and LOWTR + 1 ($9B and $9C). Also, if the number is found the carry bit is set. If
the number is not found, the next highest line number, if there is one, is stored in
LOWTR and the carry bit is cleared.

Upon returning from FNDLIN, the first thing the program does is to test the
carry-bit to see if the line number was found (line 1680). If it was not found, the
program branches to line 1940 where a message to the user is printed that rings the
bell and tells him that no such line exists in the program. If the line does exist, the
Y-register and memory location TEMP are both set to zero (lines 1690 and 1700)
and the program jumps to a subroutine that prints out the two-byte address of the
data that are going to be displayed on the next line of the video display (line 1710) .
This subroutine, which is called PRTADDR, starts on line 2050 and begins by
printing a carriage return and than a space (lines 2050 to 2070). Next, the X
register is set up as a displayed byte counter (line 2080) and is used to permit the
display of only eight bytes of data per line. Then the subroutine prints out the
address that is stored in LOWTR and LOWTR + 1, high-order byte first (lines 2090
to 2120). Finally, a colon is printed out and the program returns to the caller via the
RTS in the COUT routine (lines 2130 and 2140).

After printing out the starting memory address of the line of data to be displayed
on the screen, a space is printed (lines 1720 and 1730) and eight bytes of data are
printed. The byte to be printed is retrieved in line 1740 and checked to see if it is a
zero in line 1750. If it is a zero, TEMP is tested to see if five or more bytes have
already been printed (lines 1760 and 1770). The reason for this is that for line
numbers below 255, the fourth byte, which is the high-order byte of the line
number is set to zero. This is not the zero we wish to detect, but rather the zero that
terminates the Applesoft program line.

If five or more bytes have been printed already, we know that this zero represents
the end of the Applesoft line, so the program jumps to a routine (on line 1850), that
prints out the zero, then prints out a carriage return (line 1870) and finally jumps to
a routine in the F8 ROM called MONZ ($FF69) which leaves the user in the
monitor mode (line 1880). If for some reason you wish to return to the program that
called the APPLESOFT LINE FINDER instead of being left in the monitor, it is
only necessary to replace the JMP MONZ in line 1880 with an RTS.

If less than five bytes have been printed, we know that this is not the end of the
line and we print the zero out just as we would print any other byte (lines 1790 and
1800). Then the program jumps to a routine on line 2210 that increments the two
byte LOWTR pointer and also increments TEMP. After that, the X-register is
decremented and tested to see if eight bytes have been printed already (lines 1820
and 1830). Ifnot the program branches to line 1720 where the next byte is retrieved
and printed. Otherwise, it branches to line 1710 where the address of the next byte
to be displayed is printed. This process continues until the terminating zero of the
Applesoft program line is encountered.

The subroutine located in lines 2300 to 2400 is our, by now familiar, message
printing routine. Following this routine, on line 2480, is the text for the error
message that says the line doesn't exist.

OOOB
OOlB-
003C-
009B-
03FS
D61A
DAOC
F94 l -
FCSB
FDBE
FDDA
FDED
FF69-

02DA- 20 SB FC
02DD- A9 F4
02DF- AO 02
02El- 20 AB 03
02E4- A2 4C
02E6- A9 49
02EB- AO 03
02EA- BE FS 03
02ED- BD F6 03
02FO- BC F7 03
02F3- 60

02F4- Cl DO DO
02F7- CC CS D3
02FA- CF C6 D4
02FD- AO CC C9
0300- CE CS AO
0303- C6 C9 CE

Learning To Use The Ampersand I 137

1000 *************************************
1010 *** ***
1020 *** APPLESOFT LINE FINDER ***
1030 *** ***
1040 *** COPYRIGHT (C) 19B2 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
lOBO *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

.OR $2DA

llSO * EQUATES
1160 *
1170 TEMP
llBO TXTPTR
1190 AlL
1200 LOWTR
1210 AMPERSD
1220 FNDLIN
1230 LINGET
1240 PRNTAX
12SO HOME
1260 CROUT
1270 PRBYTE
12BO COUT
1290 MONZ
1300 *
1310 *

.EQ $B

.EQ $1B

.EQ $3C

.EQ $9B

.EQ $3FS

.EQ $D61A

.EQ $DAOC

.EQ $F941

.EQ $FCSB

.EQ $FDBE

.EQ $FDDA

.EQ $FDED

.EQ $FF69

1320 * This is where the program title is
1330 * printed out and the ampersand (&) vector
1340 * jump is set up.
13SO *
1360
1370
13BO
1390
1400
1410
1420
1430
1440
14SO
1460
1470 *
14BO *

JSR HOME
LDA #TEXTl
LDY /TEXTl
JSR MSGPRT
LDX #$4C
LDA #START
LDY /START
STX AMPERSD
STA AMPERSD+l
STY AMPERSD+2
RTS

Clear the screen.
Get the address of the
text to be printed.
Print it.
Get a JMP op code and
the low and high bytes
of START's address and
store them in locations
$3FS, $3F6 and $3F7.

1490 * This is the text for the title and
lSOO * copyright notice.
lSlO *

0306- C4 CS D2 1S20 TEXTl .AS -"APPLESOFT LINE FINDER"
.HS BDBD 0309- BD BD 1S30

030B- C2 D9 AO
030E- CA DS CC
0311- CS D3 AO
0314- CB AE AO
0317- C7 C9 CC
031A- C4 CS D2 1S40
031D- BD lSSO
031E- C3 CF DO
0321- D9 D2 C9
0324- C7 CB D4
0327- AO AB C3
032A- A9 AO Bl
032D- B9 BB B2 1S60

.AS -"BY JULES H. GILDER"

.HS BD

.AS -"COPYRIGHT (C) 19B2"

138 I Chapter 7

0330- BD
0331- Cl
0334- AO
0337- Cl
033A- D3
033D- CS
0340- D2
0343- C4

cc
D2
CB
AO
D3
D6

cc
C9
D4
D2
cs
cs

0344- BD BD BD
0347- BD 00

0349- 20 OC DA
034C- 20 lA D6
034F- 90 2E
03Sl- AO 00
03S3- B4 OB
03SS- 20 B6 03
03SB- A9 AO
03SA- 20 ED FD
03SD- Bl 9B
03SF- DO OB
0361- AS OB
0363- C9 OS
036S- BO OD
0367- A9 00
0369- 20 DA FD
036C- 20 9F 03
036F- CA
0370- FO E3
0372- DO E4
0374- A9 00
0376- 20 DA FD
0379- 20 BE FD
037C- 4C 69 FF

037F- A9 BE
03Bl- AO 03
03B3- 4C AB 03

0386- 20 BE FD
03B9- A9 AO
0388- 20 ED FD
03BE- A2 OB
0390- AS 9C
0392- 20 DA FD
039S- AS 9B
0397- 20 DA FD
039A- A9 BA
039C- 4C ED FD

039F- E6 9B
03Al- DO 02

1S70 .HS BD

lSBO .AS -"ALL RIGHTS RESERVED"

1S90
1600 *
1610 *

.HS BDBDBDBDOO

1620 * This part of the program is the main
1630 * loop. It gets the line number, finds
1640 * it in memory and displays it in hex.
16SO *
1660 START
1670
16BO
1690
1700
1710 NXTLIN
1720 PRTSPC
1730
1740
17SO
1760
1770
17BO
1790
lBOO PRINTIT
1B10
1B20
1B30
1B40
lBSO DONE
1B60
1B70
lBBO
1B90 *
1900 *

JSR LINGET
J SR FNDLIN
BCC NOLINE
LDY #$0
STY TEMP
JSR PRTADDR
LDA #$AO
JSR COUT
LDA (LOWTR), Y
BNE PRINTIT
LDA TEMP
CMP #$S
BCS DONE
LDA #$0
JSR PRBYTE
JSR INCR
DEX
BEQ NXTLIN
BNE PRTSPC
LDA #$0
JSR PRBYTE
JSR CROUT
JMP MONZ

Convert number after &
Put address of line in
Line doesn't exis t.
Zero the Y-register.
and TEMP.
Print address of line .
Print a space .

to hex .
LOWTR.

Get the next byte in the line.
If it's not zero, print it.
It is zero, did we pass
the fifth byte?
Yes, print it and end up.
No, print it and continue.
Print byte in accumulator.
Increment LOWTR and TEMP.
Decrease X by one.
X=O start a new line.
Get and print next byte.
The last byte is a zero
so print it.
Print a carriage return.
Jump to the monitor.

1910 * Tell the user the line he requested
1920 * does not exist.
1930 *
1940 NOLINE
19SO
1960
1970 *
19BO *

LDA #TEXT2
LDY /TEXT2
JMP MSGPRT

Point to text to be
printed.
Print it.

1990 * This section of the program prints
2000 * out a carriage return, a space and then
2010 * the address in memory of the first byte
2020 * displayed on the line, followed by a
2030 * colon.
2040 *
20SO PRTADDR JSR CROUT
2060 LDA #$AO
2070 JSR COUT
20BO LDX #$B
2090 LDA LOWTR+l
2100 JSR PRBYTE
2110 LDA LOWTR
2120 JSR PRBYTE
2130 LDA #$BA
2140 JMP COUT
21SO *
2160 *

Print a carriage return.
Print out a space.

Count B bytes per line.
Print out the address of
the first byte on the
line, high byte first.

Then print a colon.

2170 * Here, the pointer to the contents of
21BO * the line is incremented. Location
2190 * TEMP is incremented too.
2200 *
2210 INCR
2220

INC LOWTR
BNE INCTEMP

Learning To Use The Ampersand I 139

03A3- E6 9C
03A5- E6 OS
03A7- 60

2230 INC LOWTR+l
2240 INCTEMP INC TEMP
2250 RTS
2260 *
2270 *
22SO * This is the message printing routine.
2290 *

03AS- S5 1S 2300 MSGPRT
03AA- S4 19 2310
03AC- AO 00 2320
03AE- Bl 1S 2330 LOOP
03BO- FO OB 2340
03B2- 20 ED FD 2350
03B5- E6 1S 2360
03B7- DO F5 2370
03B9- E6 19 23SO
03BB- DO Fl 2390
03BD- 60 2400 ENDPRT

2410 *
2420 *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR) , Y
BEQ ENDPRT
JSR COUT
INC TXTPTR
BNE LOOP
INC TXTPTR+l
BNE LOOP
RTS

2430 * This is the text that tells the user
2440 * that the requested line doesn't exist
2450 * in the program. A bell is also rung
2460 * to alert the user t o the error.

03BE- SD
03BF- CE CF AO
03C2- D3 D5 C3
03CS- CS AO CC
03CS- C9 CE CS
03CB- S7 SD 00

2470 *
24SO TEXT2 .HS SD

2490
2500

.AS -"NO SUCH LINE"

.HS S7SDOO

Unlike most programs that use the ampersand, this one is meant to be used
primarily from the immediate mode rather than being called from a running pro
gram. However, as I indicated earlier, if you want it to return to a program that
called it, the change that has to be made is trivial.

To use APPLESOFT LINE FINDER, just type in an ampersand, followed by
the line number like this, &10. This will cause line 10 ofthe current Applesoft
program to be displayed on the screen in hexadecimal form and leave you in the
monitor mode so that changes can be made to it. Since a colon is used to separate
the address from the displayed data, it is only necessary to move your cursor up to
the line that is going to be changed and copy everything with the right arrow key
except those items that are going to be modified. It couldn't be simpler.

Appending two Applesoft programs together
Anyone who has done a considerable amount of BASIC programming has at one

time or another had the need to combine two programs, or program segments
together into one. There are several ways that this can be done. You can write one
segment out as a text file and then EXEC it in after the second program has been
loaded into memory, or you can use Apple's Renumber and Append program that
comes of the DOS System Master diskette.

There are some disadvantages to these approaches. First, they both require that
the user have a disk drive. Since most Apple owners have at least one drive that's
not too bad, but it still leaves a small group of people without any way of combin
ing two programs together. Another disadvantage of the EXEC approach, is that

140 I Chapter 7

you have to write a separate program to convert your Applesoft program into a text
file. In addition, if it's a long program, the append operation becomes very time
consuming. A disadvantage of using Apple's program, is that it must be loaded into
memory first, because if you try to run it after your program is in memory, it will
erase your program.

The answer to these problems is APPLESOFT APPEND, a short machine
language program that sits in pages two and three and can be loaded and run at any
time and does not require the presence of a disk drive.

The program starts off with a routine on lines 1390 to 1490 that prints out the title
page and a 'READY.' message. It also sets up the ampersand jump locations to
cause the program to jump to line 1700 when the ampersand key is pressed.

At line 1700, the program checks the character following the ampersand to see if
it is an 'H'. If it is, the program branches to the routine that puts the first program
on hold (line 1710), otherwise it checks to see if the character is an 'M'. It checks
for the 'M' (lines 1730 and 1740) a little differently than it checked for the 'H',
although we could have used the same technique. However, I wanted to introduce
you to another useful routine in the Applesoft ROMs, called SYNCHR which is
located at $DECO.

SYNCHR is Applesoft's syntax character checking routine. What it does is
check to see that TXTPTR, the pointer used by the CHRGET routine is pointing to
the same character that is in the accumulator. If the characters match the routine
returns without modifying the accumulator or TXTPTR and the program jumps to
the routine that merges the two programs together (line 1740). However, ifthe two
do not match, then it jumps to the routine in the ROMs that prints out the message
SYNTAX ERROR and halts program execution.

The purpose of the BEGIN routine is to hide, or put on hold, the first Applesoft
program. The first thing the routine does is to print out a message to the user telling
him that the first program is on hold (lines 1790 to 1810). Now, after telling the user
that it has already been done, the program goes about doing the things it must in
order to put the program on hold and hide it from the Applesoft interpreter. The
first thing it does is store the address of the beginning of the Applesoft program for
retrieval later (lines 1820 to 1850).

To hide the program, it is necessary to adjust the two-byte start of program
pointer, which is called TXTTAB, so that it points to the end of the program. This
is exactly what is done in lines 1860 to 1930. As the first step in this process, the
program jumps to a subroutine that checks to see how far past the program the end
of program pointer is pointing.

There seems to be a bug in Applesoft that increases the end of program pointer
by one if the program was written after a NEW was executed rather than after an FP
was executed. To check this, try an experiment. While in the Applesoft mode type
FP and press the carriage return. Now type CALL-151 and carriage return and
finally type AF.BO. Your screen should look like this:

]FP

Learning To Use The Ampersand I 141

CALL-151

*AF.BO

OOAF-03
OOB0-08

Now get back into Applesoft by typing a Control-C, or 3DOG if DOS is active,
and type NEW. Now type CALL-151 and AF.BO. This time, instead of getting 03
for AF, you get 04. This minor bug can cause havoc with an append program, as
many people who have tried to write one have found out. The worst part is, if you
don't know that it is caused by the differences between an FP and a NEW, it seems
like a random bug and it is almost impossible to track down.

Now that we are aware of the bug, we can negate its affects. In line 1860, the
program jumps to a subroutine called CHKEND (line 2050), that determines
whether the program that is currently in memory (the first program) was entered
after a NEW or an FP. The first thing this routine does is to set END BYTE equal to
two, which is the value it should have if the program was entered after an FP (lines
2050 and 2060). Next the carry is set (line 2070) and a two-byte subtraction is
performed, subtracting four from the end of program pointer (lines 2080 to 2130).

The value obtained from this subtraction is used as a pointer to pick up the next
to the last byte of the last program line (line 2150). This byte should not be a zero. If
the value retrieved is not zero, then the program was entered after an FP was
executed and the value of ENDBYTE is okay. If it is zero, the end of program
pointer was advanced by one, which means that the program was entered after a
NEW. In this case, ENDBYTE must be incremented by one (line 2170), before
returning to the calling routine.

Upon returning to the calling routine (back to line 1870) we now know how many
bytes past the end of the program PRGEND is pointing, and thus know how much
to subtract from it in order to get the correct starting location for the second
program. In lines 1870 to 1930, the subtraction is performed, and the results are
stored in the beginning of program pointer (TXTTAB). Finally, the program re
turns to the immediate mode either directly if DOS is not present, or via DOS if it is
(lines 1940 to 1980).

There are still two routines we haven't gone over yet. One is the message printing
routine (lines 2370 to 2450) which should be quite familiar by now and will not be
discussed. The other is the RESET routin.e (lines 2250 to 2320). The RESET
routine is reached only if an &Mis entered (lines 1720 to 1740). This command
should only be entered after the first program has been put on hold and the second
program has been loaded. It can also be use to retrieve the first program if you
change your mind and decide you don't want to append anything to it.

The first thing this routine does is to tell the user that the appending operation
has been completed (lines 2250 to 2270). Then the start of program pointers for the
first program, which were stored in TEMP and TEMP+ 1, are restored to TXT
TAB. The only thing left to do is to reset the line links (the next line pointers). This

142 I Chapter 7

is done by calling a routine in the Applesoft ROMs known as LINKSET ($D4F2).
This routine does not return, but instead returns control to the immediate mode.

This program works very much like Apple's program. Once it is activated by
loading it and doing a CALL 696, it is only necessary to load in your first program
and then press &H to put it on hold. If you try to list the program at this point, it will
have seemed to disappear. Don't get nervous it's still there and can be recalled by
typing in &M. Try it and then type LIST. See? I told you there was nothing to
worry about. If you did bring the program back by typing &M, let's type &H again
to make it disappear once more. Next, load in your second program and type &M
to merge the two programs together. That's all there is to it.

One thing you should pay attention to when using a program like APPLESOFT
APPEND is that the line numbers of the second program are always greater than
the line numbers of the first program. The only time you do not have to worry about
this constraint is ifthere are no GOTOs, GOSUBs orIF ... THEN <line number>
statements in the second program. In that case the line numbers can overlap, but if
they do, remember, you are not going to be able to edit or individually list the lines
of the second program.

1000 *************************************
1010 *** ***
1020 *** APPLESOFT APPEND ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 .OR $2B8
1130 *
1140 *
1150 * EQUATES
1160 *
1170 *

0006- 1180 TEMP .EQ $6
0008- 1190 TXTPTR .EQ $8
0067- 1200 TXTTAB .EQ $67
OOAF- 1210 PRGEND .EQ $AF
03DO- 1220 WARMDOS .EQ $3DO
03F5- 1230 AMPERSD .EQ $3F5
D4F2- 1240 LINKSET .EQ $D4F2
DECO- 1250 SYNCHR .EQ $DECO
EOOO- 1260 BASIC .EQ $EOOO
FC58- 1270 HOME .EQ $FC58
FDED- 1280 GOUT .EQ $FDED

1290 *
1300 *
1310 * This section clears the screen and
1320 * prints out the title and copyright
1330 * notice. It also notifies the user
1340 * that the first program has been put
1350 * on hold. It then sets up the
1360 * ampersand jump vector to point to
1370 * this program.
1380 *

02B8- 20 58 FC 1390 JSR HOME Clear the screen.
02BB- A9 D2 1400 LDA #TEXTl Print out the title and
02BD- AO 02 1410 LDY /TEXTl copyright notice.
02BF- 20 97 03 1420 JSR MSGPRT

02C2- A9 4C
02C4- SD FS 03
02C7- A9 31
02C9- SD F6 03
02CC- A9 03
02CE- SD F7 03
02Dl- 60

1430
1440
14SO
1460
1470
1480
1490
1SOO *
1Sl0 *

Learning To Use The Ampersand I 143

LDA #$4C
STA AMPERSD
LDA #START
STA AMPERSD+1
LDA /START
STA AMPERSD+2
RTS

Set up the ampersand
jump vector to point
to START.

1S20 * This is the title and copyright information
1S30 * printed out the first time the
1S40 * program is run.

02D2- Cl DO DO
02DS- CC CS D3
02D8- CF C6 D4
02DB- AO Cl DO
02DE- DO CS CE
02El- C4 AO DO
02E4- D2 CF C7
02E7- D2 Cl CD
02EA- SD SD
02EC- C2 D9 AO
02EF- CA DS CC
02F2- CS D3 AO
02FS- CS AE AO
02F8- C7 C9 CC
02FB- C4 CS D2
02FE- SD
02FF- C3 CF DO
0302- D9 D2 C9
030S- C7 CB D4
0308- AO AS C3
030B- A9 AO Bl
030E- B9 BS B2
0311- SD
0312- Cl CC CC
031S- AO D2 C9
0318- C7 CS D4
031B- D3 AO D2
031E- CS D3 CS
0321- D2 D6 CS
0324- C4
032S- SD SD SD
0328- SD
0329- D2
032C- C4
032F- SD

CS Cl
D9 AE
00

0331- C9 48
0333- FO 08
033S- A9 4D
0337- 20 CO DE
033A- 4C SS 03

1SSO *

1S60 TEXT1
1S70

1S80
1S90

1600
1610

1620

1630

1640
16SO
1660 *
1670 *
1680 *
1690 *
1700 START
1710
1720
1730
1740
17SO *
1760 *

.AS -"APPLESOFT APPEND PROGRAM"

.HS 8D8D

.AS -"BY JULES H. GILDER"

.HS SD

.AS -"COPYRIGHT (C) 1982"

.HS SD

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D8D

.AS -"READY."

.HS 8DOO

CMP #$48
BEQ BEGIN
LDA #$4D
JSR SYNCHR
JMP RESET

Is there an ' H' after &?
Yes, put program on hold .
No, is it an 'M' ?

Yes, merge the programs.

1770 * This section hides the first program.

033D- A9 AS
033F- AO 03
0341- 20 97
0344- AS 68
0346- A4 67
0348- SS 07
034A- 84 06
034C- 20 69
034F- AS AF
03Sl- 38
03S2- ED CF
03SS- SS 67

1780 *
1790 BEGIN
1800

03 1810
1820
1830
1840
18SO

03 1860
1870
1880

03 1890
1900

LDA #TEXT2
LDY /TEXT2
JSR MSGPRT
LDA TXTTAB+1
LDY TXTTAB
STA TEMP+l
STY TEMP
JSR CHKEND
LDA PRGEND
SEC
SBC ENDBYTE
STA TXTTAB

Tell the user a program
is on hold .

Get the start of
program pointers
and save them for
later.
Programmed after FP or
Set the end of program
pointer to the
beginning .

NEW?

144 I Chapter 7

03S7- AS BO
03S9- E9 00
03SB- SS 6S
03SD- A9 DO
03SF- C9 4C
0361- DO 03
0363- 4C DO 03
0366- 4C 03 EO

1910
1920
1930
1940
19SO
1960
1970
19SO NODOS
1990 *
2000 *

LDA PRGEND+l
SBC #$0
STA TXTTAB+l
LDA #WARMDOS
CMP #$4C
BNE NODOS
JMP WARMDOS
JMP BASIC+3

Borrow if necessary.

Return to a BASIC
warm start, through
if it is present.
DOS is present.
DOS is not present.

2010 * This routine checks to see if the
2020 * program was written after an FP
2030 * (ENDBYTE=2) or after a NEW (ENDBYTE=3).
2040 *
20SO CHKEND LDA #$2 Set ENDBYTE to 2

for now.

DOS

0369- A9 02
036B- SD CF
036E- 3S
036F- AS AF
0371- E9 04
0373- SS 67
037S- AS BO
0377- E9 00
0379- SS 6S
037B- AO 00
037D- Bl 67
037F- DO 03
03Sl- EE CF
03S4- 60

03 2060
2070
20SO
2090
2100
2110
2120
2130
2140
21SO
2160

STA ENDBYTE
SEC
LDA PRGEND
SBC #$4

Prepare for subtraction
Subtract 4 from the

03 2170
21SO CHKDONE
2190 *

STA TXTTAB
LDA PRGEND+l
SBC #$0
STA TXTTAB+l
LDY #$0
LDA (TXTTAB) ,Y
BNE CHKDONE
INC ENDBYTE
RTS

end of program
pointer and save
in TXTTAB.
Borrow if necessary:

Get last byte of program.
If not zero, ENDBYTE okay.
Increase ENDBYTE by 1.
Return.

2200 * This section resets the start of
2210 * program pointers and then calls the
2220 * line link fixing routine which then
2230 * returns to Applesoft.

03SS- A9
03S7- AO
03S9- 20
03SC- AS
03SE- SS
0390- AS
0392- SS
0394- 4C

BB
03
97 03
06
67
07
6S
F2 D4

2240 *
22SO RESET
2260
2270
22SO
2290
2300
2310
2320
2330 *
2340 *

LDA #TEXT3
LDY /TEXT3
JSR MSGPRT
LDA TEMP
STA TXTTAB
LDA TEMP+l
STA TXTTAB+l
JMP LINKSET

Point to APPEND
COMPLETED message.
Print it.
Restore the low-order
byte of the pointer.
Restore the high-order
byte.
Fix the line links.

23SO * This is the message printing routine.
2360 *

OS 2370 MSGPRT 0397- SS
0399- S4
039B- AO
039D- Bl
039F- FO
03Al- 20
03A4- CS
03AS- DO F6
03A7- 60

09 23SO
00 2390
OS 2400 LOOP
06 2410
ED FD 2420

2430
2440
24SO ENDPRT
2460 *
2470 *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR) ,Y
BEQ ENDPRT
JSR COUT
INY
BNE LOOP
RTS

24SO * These are the text messages printed out
2490 * by the program.

03AS-
03A9-
03AC-
03AF-
03B2-
03BS-
03BS-
03B9-
03BB-
03BC-
03BF-
03C2-
03C5-

SD
DO D2 CF
Cl D2 Cl
CD AO CF
CE AO CS
CF CC C4
AE
SD 00
SD
Cl
cs
AO
CD

DO DO
CE C4
C3 CF
DO CC

2500 *
2510 TEXT2

2S20
2S30
2S40 TEXT3

.HS SD

.AS -"PROGRAM ON HOLD."

.HS SDOO

.HS SD

03C8- CS D4 CS
03CB- C4 AE
03CD- 8D 00
03CF- 00

Learning To Use The Ampersand I 145

2SSO .AS -"APPEND COMPLETED."
2S60 . HS 8DOO
2S70 ENDBYTE .HS 00

How to restore lost Applesoft programs
Has this ever happened to you? You spend three days working on that super

duper whiz-bang program then you accidentally hit reset and get thrown into the
monitor mode. You type Control-B instead of the Control-C you intended and
PUFF! Three days of work have vanished before your eyes. Or maybe you acciden
tally typed NEW before you saved the final version of your program. Again, long
hours of work have disappeared. This can be frustrating for any programmer, but it
doesn't have to be for you any more, because &RES'IDRE will bring back your
vanished program as quickly as you can type in the command &RES'IDRE. And
you don't have to worry about loading this program first. It sits in page three and
can be loaded at any time, before or after you've lost your program. To use it just
type CALL 768 or after it has been run once just type &RES'IDRE.

What makes a program like this possible is the fact that the designers of the
Applesoft language wanted to have an efficient language and decided that it was not
necessary to actually erase the contents of memory every time a NEW command
was issued. Instead, they just changed the information stored in the end of program
pointer and erased only two bytes of data. So the program is still in memory, it's
just that Applesoft doesn't know where to look for it. By restoring the two bytes that
were erased (the pointer to the second line of the Applesoft program), and search
ing through memory until the end of the program is found and restoring the
PRGEND pointer, the program can be brought back to life, as if it were always
there.

In this program, we will see how we can use the existing set of key words and
give them new functions to perform. In this case, as you've already guessed, we're
going to use the RES'IDRE command. This command will still perform its usual
function without any problems. But, when it is preceded by another command, the
ampersand(&), it takes on an entirely new task.

The &RES'IDRE program begins, on line 1410, by setting up the ampersand
jump vector to point to START and after that jumps to START2 (line 1470),
skipping the code that checks for the presence of the word RES'IDRE. At line
1620, which is the ampersand entry point, the program loads the token for the word
RES'IDRE (which is $AE) into the accumulator and then jumps to the syntax
character checking routine (SYNCHR) to see ifthat token matches the information
following the ampersand. If it doesn't, the subroutine prints out SYNTAX ERROR
and stops execution of the main program. If it matches, the main program falls into
the START2 routine.

It is not at all necessary to use the RES'IDRE command, but I thought you'd like
to see how to do it. If you prefer to use just the & as the command, simply eliminate
lines 1470, 1620 and 1630 and rename the label on line 1640, START. Once at line

i'
I

146 I Chapter 7

1640, the program clears the screen and prints out the program's title, copyright
notice and the word READY, indicating to the user that the program has already
been restored. While the program has not yet been restored, the task is accom
plished so quickly, that the user never realizes it.

The actual program restoration begins on line 1780 where the start of program
pointer, TXTTAB, is used to produce another pointer (lines 1780 to 1830), called
POINTER, which will skip the first four bytes of the line (these consist of the next
line pointer and the line number) . The reason we want to skip these bytes is that
ultimately we want to find the end of the first line which is terminated with a zero.
However, any of the first four bytes can legitimately contain a zero, which could
result in premature termination of this program.

After POINTER has been calculated and stored, the high-byte of the start of
program pointer is still in the accumulator and it is stored as the high byte of the
pointer to the second line in the program (line 1850).

Now that the high-byte of the next line link to the second line has been restored,
we have to find out where the first line ends in memory so that we can restore the
low-byte. The routine that does this, FINDEOL, begins in line 1870. In lines 1870
and 1880, the Y-register is incremented and the contents of the location pointed to
by both POINTER and the offset of the Y-register, are checked to see if they are
zero. If not, the process is repeated until they are. If they are, the Y-register is
transferred to the accumulator (line 1900), the carry bit is cleared in preparation for
adding two numbers (line 1910) and 5 is added to the accumulator (line 1920). The
five includes the four bytes that were skipped at the beginning, plus an additional
byte so that the pointer will point not to the last character of the Applesoft line, but
one past it, where the next line actually begins. This number is stored in the low
byte of the next line pointer (line 1940).

If the program were to stop at this point, you would be able to list the program
and it would appear as if it had all been restored. It hasn't, because if you saved it
out to tape or disk and then loaded it back in, you'd find you had nothing, even
though you were able to list it, and also run it. The program can be saved at this
point only by listing it to an EXEC file. The reason the program will not save out
properly is that we have not adjusted the end of program pointer, PRGEND, to
point to the end of the program. This is what is done, starting at line 2000, where
TXTTAB, the start of program pointer, is loaded into POINTER (lines 2000 to
2030).

In lines 2040 and 2050, a flag called TESTBYT is set to zero. This is going to be
used to help us determine when the end of the program has been reached. A loop to
scan the program is set up starting at line 2060, where POINTER and the Y-register
are used to determine the next location from which a byte will be loaded and tested
to see if it is equal to zero. After the byte is loaded, and before the test is performed,
the Y-register is incremented (line 2070) and a check is made to see if a memory
page boundary has been crossed (e.g. did we go from an address in the $800 range
to an addresses in the $900 range). If no page boundary was crossed (line 2080) the
program branches to ZEROCHK, otherwise, the high-byte of POINTER is incre-

Learning To Use The Ampersand I 14 7

mented by one.

ZEROCHK is where the byte in the accumulator is tested to see if it is a zero (line
2100). If it's not, the program branches back to line 2040 where TESTBYT is reset
to zero, and then checks the next byte. If it is a zero, we have to determine if this is
the end of an Applesoft line or the end of the program. To do this we check
TESTBYT and see if it is equal to two (lines 2120 and 2130). If it is (line 2140), this
is the end of the program and the program branches io a routine that stores all of the
pointers. If it's not equal to two, we increment TESTBYT by 1 and go back to check
the next byte. As you see, TESTBYT is used to determine how many consecutive
zeros we have encountered. The end of the program is indicated by three consecu
tive zeros; one for the end ofline marker and two instead of the next line pointer.

The EXIT routine is where all of the Applesoft pointers are adjusted. These
include the end of program pointer (PRGEND), the start of variable storage (VAR
TAB), the start of array storage (ARYTAB) and the end of string storage
(STREND). In line 2170, the Y-register is incremented by one because we want to
point to one past the three consecutive zero bytes. The Y-register is then transferred
to the accumulator (line 2180) and the high-byte of POINTER is incremented if a
page boundary is crossed (lines 2190 and 2200). All of the appropriate zero page
pointers are updated in lines 2210 to 2290.

004C-
00AE-

0006-
0008-
0067-
0069-
006B-
006D
OOAF-
03F5-
DECO
FC58-
FDED-

1000 *************************************
1010 *** ***
1020 *** &RESTORE ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120
1130 *
1140 *

. OR $300

1150 * CONSTANTS
1160 *
1170 JUMP . EQ $4C
1180 RESTORE . EQ $AE
1190 *
1200 *
1210 * EQUATES
1220 *
1230 POINTER
1240 TESTBYT
1250 TXTTAB
1260 VARTAB
1270 ARYTAB
1280 STREND
1290 PRGEND
1300 AMPERSD
1310 SYNCHR
1320 HOME .
1330 COUT
1340 *
1350 *

.EQ $6

.EQ $8

.EQ $67

.EQ $69

.EQ $6B

.EQ $6D

.EQ $AF

.EQ $3F5

.EQ $DECO

.EQ $FC58

. EQ $FDED

JMP op code
RESTORE token

1360 * This is where the ampersand jump
1370 * vector is set up. After set-up,
1380 * a relative jump is made to the
1390 * second entry point of the program.

I

II

148 I Chapter 7

0300- A9 4C
0302- BD FS
030S- A9 12
0307- BD F6
030A- A9 03
030C- BD F7
030F- 4C 17

1400 *
1410

03 1420
1430

03 1440
14SO

03 1460
03 1470

14BO *

LDA #JUMP
STA AMPERSD
LDA #START
STA AMPERSD+l
LDA /START
STA AMPERSD+2
JMP START2

Get the JMP
op-code & store
it and the
address of the
start of this
program.
Go_ to START2.

0312- A9 AE
0314- 20 CO DE
0317- AO 00
0319- 20 SB FC
031C- B9 7E 03
031F- FO 06
0321- 20 ED FD
0324- CB
032S- DO FS

0327- AS 67
0329- lB
032A- 69 03
032C- BS 06
032E- AS 6B
0330- BS 07
0332- AO 01
0334- 91 67
0336- 8B
0337- C8
033B- Bl 06
033A- DO FB
033C- 9B
033D- 18
033E- 69 OS
0340- AO 00
0342- 91 6 7

0344- AS 67
0346- BS 06
034B- AS 6B
034A- 8S 07
034C- A9 00
034E- BS OB
03SO- Bl 06
03S2- CB
03S3- DO 02
0355- E6 07
03S7- C9 00
0359- DO Fl
03SB- AS OB

1490 *
lSOO * There are two entry points to this
lSlO * program. One is via the &RESTORE
1S20 * command (START) and one by a CALL 76B
1S30 * (START2). At START, the program
1S40 * looks at the information that follows
lSSO * the & to see if it is the RESTORE
1S60 * token. This is done by SYNCHR . If
1S70 * not RESTORE a syntax error is
lSBO * generated. Once syntax has been
1S90 * checked, the program title is
1600 * printed out.
1610 *
1620 START
1630
1640 START2
16SO
1660 LOOP!
1670
16BO
1690
1700
1710 *
1720 *

LDA #RESTORE
JSR SYNCHR
LDY #$0
JSR HOME
LDA TEXT,Y
BEQ NEXT
JSR GOUT
INY
BNE LOOP!

Does the RESTORE
token follow the &?
Yes, zero character pointer.
Clear the screen.
Get a character.
If done go to NEXT.
Print a character.
Increment the pointer.
Get more characters.

1730 * This section of program resets the
1740 * start of program pointers that are
17SO * wiped out when a NEW or Control-B
1760 * are entered.
1770 *
17BO NEXT
1790
lBOO
lBlO
1B20
1B30
1B40
lBSO
1B60
1B70 FINDEOL
lBBO
1B90
1900
1910
1920
1930
1940
19SO *
1960 *

LDA TXTTAB
CLC
ADC #$3
STA POINTER
LDA TXTTAB+l
STA POINTER+!
LDY #$1
STA (TXTTAB) , Y
DEY
INY
LDA (POINTER) ,Y
BNE FINDEOL
TYA
CLC
ADC
LDY
STA

#$S
#$0
(TXTTAB), Y

Ge t program start
low byte. Calculate
and save the starting
line's low byte.
Ge t program start
high byte and save it.
Save 2nd line's
high byte.
Zero the Y-register .
Look for the end
of line marker
Keep looking.
Found end of line,
find value of
program start
low byte and
restore it.

1970 * This part of the program resets the
19BO * end of program pointers.
1990 *
2000
2010
2020
2030
2040 LOOP2
20SO
2060 LOOP3
2070
20BO
2090
2100 ZEROCHK
2110
2120

LDA TXTTAB
STA POINTER
LDA TXTTAB+l
STA POINTER+!
LDA #$0
STA TESTBYT
LDA (POINTER), Y
INY
BNE ZEROCHK
INC POINTER+!
CMP #$0
BNE LOOP2
LDA TESTBYT

Store start of
program pointers
in POINTER for
future use.
Initialize end of
program test byte.
Start scanning
the program.
Page boundary?
Yes, increment the byte.
Does the accumulator=O?
No, keep scanning.
Yes, is it the

03SD- C9 02
03SF- FO 04
0361- E6 OB
0363- DO EB
036S- CB
0366- 9B
0367- DO 02
0369- E6 07
036B- BS 69
036D- BS 6B
036F- BS 6D
0371- BS AF
0373- AS 07
037S- BS 6A
0377- BS 6C
0379- BS 6E
037B- BS BO
037D- 60

2130
2140
21SO
2160
2170 EXIT
21BO
2190
2200
2210 STORPTR
2220
2230
2240
22SO
2260
2270
22BO
2290
2300
2310 *
2320 *

Learning To Use The Ampersand I 149

CMP #2
BEQ EXIT
INC TESTBYT
BNE LOOP3
INY
TYA
BNE STORPTR
INC POINTER+l
STA VARTAB
STA ARYTAB
STA STREND
STA PRGEND
LDA POINTER+l
STA VARTAB+l
STA ARYTAB+l
STA STREND+l
STA PRGEND+l
RTS

end of the program?
Yes, finish up.
No, increment the t es t byte .
Get the next byte.
Adjust the byte
count & see if
we have to increment
the high byte too .
Store the low byte
of the end of the program
in the appropriate
zero page locations .
Store the high byte
of the end of the program
in the appropriate
zero page
locations .
Return.

2330 * This is where text for program title
2340 * and copyright notice are stored.
23SO *

· OJ7E- A6 D2 CS
03B1- D3 D4 CF
03B4- D2 CS 2360 TEXT
03B6- BD BD 2370
03BB- C2 D9 AO
03BB- CA DS CC
03BE- CS D3 AO
0391- CB AE AO
0394- C7 C9 CC
0397- C4 CS D2 23BO
039A- BD 2390
039B- C3 CF DO
039E- D9 D2 C9
03A1- C7 CB D4
03A4- AO AB C3
03A7- A9 AO Bl
03AA- B9 BB B2 2400
03AD- BD 2410
03AE- Cl CC CC
03B1- AO D2 C9
03B4- C7 CB D4
03B7- D3 AO D2
03BA- CS D3 CS
03BD- D2 D6 CS
03CO- C4 2420
03Cl- BD BD BD 2430
03C4- D2 CS Cl
03C7- C4 D9 AE 2440
03CA- BD 00 24SO

.AS -"&RESTORE"

.HS BDBD

.AS -"BY JULES H. GILDER"

.HS BD

.AS -"COPYRIGHT (C) 19B2"

. HS BD

.AS -"ALL RIGHTS RESERVED"

.HS BDBDBD

. AS -"READY."

. HS BDOO

Chapters

EXPANDING APPLESOFf BASIC

In the last chapter we saw how it was possible to use the ampersand (&), an
Applesoft key word, to jump to a machine language program whenever we wanted
to, even in the middle of an Applesoft program. Sometimes, however, it is desir
able to not only jump to a machine language routine, but to take some variables
along for the ride. This is particularly important if you want to expand the capabili
ties of the Applesoft language.

Just as there are several ways to jump from Applesoft to a machine language
program, there are also several ways to pass variables. Single byte variables can be
POKEd into place before the jump. So can double byte variables, but that starts to
become a little cumbersome. The two major ways of passing variables, however,
are by letting them follow the ampersand, or by using the USR command in
Applesoft . In this chapter, we are going to look at both of these methods and go
over two programs for each approach. In addition, we'll learn how to add special
function keys to Applesoft.

The programs in this chapter are unusual in that they are designed to expand the
capabilities of the Applesoft language. One of the nice features of Integer BASIC
which never made it into Applesoft, was the ability to have computed commands.

150

Expanding Applesoft Basic I 15 1

For instance, wouldn't it be nice to be able to write Garo ENTERINFO when you
transfer control to a portion of the program that handles the input of data, instead of
writing Garo 200. Or perhaps you want to determine where to branch to depend
ing on the data entered. Wouldn't it be nice to be able to write Garo N* 100, where
N is the data entered. The convenience of computed commands can be had for the
GOSUB and LIST keywords as well. Just how to implement these commands is
demonstrated in the first program entitled, COMPUTED Garo, GOSUB AND
LIST.

Adding new commands to Applesoft
In this program, we're going to use the ampersand to define three new com

mands: &Garo, &GOSUB and &LIST. To start off, the program sets up the
ampersand jump locations on page three, so that they point to the part of the
program that handles the computed functions (lines 1520 to 1570). After that, the
program title is printed out along with the word READY to indicate to the user that
the program is properly installed, and ready to use (lines 1580 to 1610).

When the Applesoft interpreter encounters an ampersand, it transfers control to
the subroutine labelled START on line 1710. Here the program tests the character
that follows the ampersand to see if it represents the Garo, GOSUB or LIST
tokens (lines 1710 to 1760). If it's none of these, the last test, which is performed by
using the SYNCHR routine in the Applesoft ROMs, will return control to the
immediate mode after printing a SYNTAX ERROR message. If it is either Garo
or GOSUB a branch is made to the appropriate routine. If it's LIST, the program
returns from the SYNCHR routine and falls into the routine that handles the
computed LIST statement.

The first thing that the routine for the computed LIST does, is a jump to a short
routine that is the heart of this entire program (line 1820). This routine is generally
used as a replacement for the LINGET ($DAOC) routine that is normally found in
the listings for these commands. The LINGET routine, expects to find a digit
following these commands and also expects that the number these digits form is no
greater than 63999. If the number is larger, a syntax error is generated.

The two routines that are jumped to from EVLNM2 (line 2370), however,
expect only to find a number, variable or expression and will accept any value
between + 65535 and -65535. The FRMEVL routine evaluates whatever is found
after the token and puts the value that it calculates into the floating point accumula
tor (FAC), which is located on page zero from $9D to $A2. In this form , the
number is not very useful, so we use another Applesoft ROM routine to convert the
number in the FAC to a two-byte integer number that is stored in LINNUM ($50).

Once we have the number as a two-byte integer, we call another Applesoft
routine (line 1830), known as FNDLIN ($D61A), to find out where the Applesoft
program line is located in memory. When FNDLIN locates the line, it puts the
address of the line in a two-byte pointer on page zero called LOWTR (which is at
$9B). The address is then taken from the LOWTR pointer and stored in another set

- - ,--,.,

152 I Chapter 8

of page zero locations until it is needed later (lines 1840 to 1870).

With the address of the first line to be listed safely stored, the program then
checks to see if the next character following the number, variable or formula, is a
zero (lines 1880 and 1890). If it is, the return address that was pushed on the stack
when this routine .was entered, is popped off and a jump is made to an entry point in
the middle of Applesoft's LIST routine. As a result, only the one line is listed. The
reason for this is the zero that followed the expression was an end of text marker
and told the program that a single line was to be listed, and not a range oflines.

Understanding one of Applesoft's quir~
At this point, it is easy to explain one of the quirks of the Applesoft LIST

command. Those of you who start their programs with line number zero may have
encountered some problems when you tried to list line zero by typing LIST 0.
Instead oflisting that one line, it lists the entire program. The reason for this is that
LIN GET, which is used in Applesoft's LIST routine, returns a zero in LINNUM if
no line number follows the LIST command. This is the same result that is returned
for a zero following the command. Since the program is set up to list the entire
program when LINNUM is zero, it is not possible to list just line zero with the
Applesoft LIST command.

Th~ culprit in Applesoft, is a short routine located between $D6CE and and
$D6D8. Here, both the high and low bytes of LINNUM are ORed together. If the
result is zero, and that will only happen if LINNUM is zero, $FF is loaded into
both the high and the low bytes of LINNUM, effectively telling the program that
the last line to be listed is line 65535. Our program overcomes this shortcoming by
branching past this code to an entry point called NXTLST ($D6DA). Thus an
&LISTO, will list only line zero, if it exists, or nothing if it doesn't.

Getting back to our program, if the character following the expression was not a
zero, a check is made to see if the only legitimate character that is permitted there, a
comma, is present (line 1930). If the character was not a comma, an error condi
tion exists and the subroutine returns immediately, generating a syntax error mes
sage in the process.

If the character was a comma, that is a sign to the program, that a range oflines is
to be listed and not merely a single line. Knowing that, the program looks for the
second expression that will yield a number that represents the last line to be listed
(line 1950). That number is stored in both bytes of LINNUM and then a check is
made to see if the end of the command has been reached (line 1960). If the next
character that is retrieved is not a zero, a syntax error message is generated. If it is,
the location of the first line to be listed is restored to LOWTR and the program
jumps to LIST2 ($D6CC) where the rest of Applesoft's LIST routine is used.

GOfOs and GOSUBs can be computed too
If the character that follows the ampersand is not a LIST token, but a GOTO

token, then the program branches to line 2070, where a very short subroutine is

Expanding Applesoft Basic I 153

executed. First the program jumps to the EVLNUM routine to get the line number,
and then it jumps to a secondary entry point in the GOTO routine, past the section
of code that uses LIN GET to determine which line is to be jumped to, and executes
the command.

The computed GOSUB routine, on line 2130, is not much more complex. The
GOSUB routine normally pushes information on the stack so the first thing the
routine does, is to check and see if there's room on the stack for the required data.
Here another Applesoft ROM routine is used, CHKMEM ($D3D6). CHKMEM is
entered with a number in the accumulator that represents the number of items to be
stored on the stack. CHKMEM assumes that all of the items to be stored will be
two-bytes in length and thus doubles the value in the accumulator and uses that
number to ascertain if there is enough room on the stack. Once we find out that
there is room, the current value of TXTPfR and CURLIN (each two-byte varia
bles) is pushed on the stack (lines 2150 to 2220). In addition, it is necessary to push
the GOSUB token ($BO) on the stack as well. This is done in lines 2230 and 2240.
As you can see, only five bytes of stack storage were really needed and not the six
that were checked for.

With the stack properly conditioned, the program now does a subroutine jump to
the computed GOTO routine (line 2250) to find which line is required and where it
is located in memory. Then the program jumps to another Applesoft routine,
NEWSTT ($D7D2) where the GOSUB is actually executed.

The remainder of the listing consists of the message printing routine
(MSGPRT) and the text that it prints out.

002C-
004C
OOAB
OOBO
OOBC-

0006-
0008-
0075-
009B
OOB1-
00B7-
OOB8-
03F 5-

1000 *************************************
1010 *** ***
1020 *** COMPUTED GOTO, GOSUB AND LIST ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 ***~*********************************
1090 *
1100 *
1110
1120 *
1130 *

.OR $2D8

1140 * CONSTANTS
1150 *
1160 COMMA
1170 JUMP
1180 GOTO
1190 GOSUB
1200 LIST
1210 *
1220 *

.EQ $2C

.EQ $4C

.EQ $AB

.EQ $BO

.EQ $BC

1230 * EQUATES
1240 *
1250 TEMP
1260 PNTR
1270 CURLIN
1280 LOWTR
1290 CHRGET
1300 CHRGOT
1310 TXTPTR
1320 AMPER

.EQ $6

.EQ $8

.EQ $75

.EQ $9B
:EQ $Bl
.EQ $B7
.EQ $B8
.EQ $3F5

r 154 I Chapter 8

D3D6-
D61A
D6CC
D6DA
D7D2-
D941-
DD7B
DECO
E7S2-
FCS8-
FDED-

02D8- A9 4C
02DA- 8D FS 03
02DD- A9 Fl
02DF- 8D F6 03
02E2- A9 02
02E4- 8D F7 03
02E7- 20 S8 FC
02EA- A9 6C
02EC- AO 03
02EE- 4C S6 03

1330 CHKMEM
1340 FNDLIN
13SO LIST2
1360 NXTLST
1370 NEWSTT
1380 GOT02
1390 FRMEVL
1400 SYNCHR
1410 GETADR
1420 HOME
1430 GOUT
1440 *
14SO *

.EQ $D3D6

.EQ $D61A

.EQ $D6CC

.EQ $D6DA

.EQ $D7D2

.EQ $0941

.EQ $DD7B

.EQ $DECO

.EQ $E7S2

.EQ $FCS8

.EQ $FDED

1460 * This section of code sets up the ampersand
1470 * jump vector and prints out the program
1480 * title. When the READY. prompt is
1490 * displayed, the user knows the program
lSOO * is active and ready to use.
lSlO *
1S20
1S30
1S40
lSSO
1S60
1S70
1S80
1S90
1600
1610
1620 *
1630 *

LOA #JUMP
STA AMPER
LOA #START
STA AMPER+l
LOA /START
STA AMPER+2
JSR HOME
LOA #TEXT
LOY /TEXT
JMP MSGPRT

Get a JMP op code and
store it at $3FS.
Store the address of
the start of the
program at $3F6 and
$3F7.
Clear the screen.
Point to the text to
be printed.
Print it.

1640 * Here the character immediately following
16SO * the ampersand is checked to see if it
1660 * is the GOTO, GOSUB or LIST tokens. If
1670 * it's none of these, a syntax error is
1680 * generated, otherwise control is turned
1690 * over to the appropriate subroutine .
1700 *
1710 START
1720
1730
1740
17SO

Is it GOTO?
Yes, do it.
No, is it GOSUB?
Yes, do it.
Is it LIST?

02Fl-
02F3-
02FS-
02F7-
02F9-
02FB-

C9 AB
FO 38
C9 BO
FO 3A
A9 BC
20 co DE 1760

1770 *
1780 *

CMP #GOTO
BEQ CGOTO
CMP #GOSUB
BEQ CGOSUB
LOA #LIST
JSR SYNCHR Syntax error if not.

02FE- 20
0301- 20
0304- AS
0306- 8S
0308- AS
030A- 8S
030C- 20
030F- DO
0311- 68
0312- 68

so 03
lA 06
9B
06
9C
07
B7 00
OS

0313- 4C DA 06
0316- C9 2C
0318- DO Sl
031A- 20 40 03
0310- 20 B7 00
0320- DO 49
0322- AS 06
0324- 8S 9B
0326- AS 07
0328- 8S 9C
032A- 4C CC 06

1790 * This is the subroutine that handles the
1800 * computed LIST statement.
1810 *
1820
1830
1840
18SO
1860
1870
1880
1890
1900
1910
1920
1930 CHKCOM
1940
19SO
1960
1970
1980
1990
2000
2010
2020
2030 *
2040 *

JSR
JSR
LOA
STA
LOA
STA
JSR
BNE
PLA
PLA

EVLNM2
FNDLIN
LOW TR
TEMP
LOWTR+l
TEMP+l
CHRGOT
CHKCOM

JMP NXTLST
CMP #COMMA
BNE ENDPRT
JSR EVLNUM
JSR CHRGOT
BNE ENDPRT
LDA TEMP
STA LOWTR
LDA TEMP+l
STA LOWTR+l
JMP LIST2

Get the number after LIST.
Find first line in memory.
Save location for
use later. Get
both high and low
bytes.
Get character after variable.
Not zero, maybe comma.
Pop return address
off the stack.
List just one line.
Was it a comma?
No, return with error.
Yes, get next value.
Get character after it.
Not zero, return with error .
Restore location of
first line in listing
range.

List range of lines.

20SO * This routine handles the computed GOTO.

032D- 20 4D 03
0330- 4C 41 D9

0333- A9
033S- 20
0338- AS
033A- 48
033B- AS B8
033D- 48
033E- AS 16
0340- 48
0341- AS lS
0343- 48
0344- A9 BO
0346- 48
0341- 20
034A- 4C

03
D6 D3
B9

2D 03
D2 Dl

034D- 20 Bl 00
03SO- 20 lB DD
03S3- 4C S2 El

2060 *
2010 CGOTO JSR EVLNUM
2080 JMP GOT02
2090 *
2100 *

Expanding Applesoft Basic I 155

Get the line number.
Jump to i t .

2110 * This routine handles the computed GOSUB.
2120 *
2130 CGOSUB
2140
21SO
2160
2110
2180
2190
2200
2210
2220
2230
2240
22SO
2260
2210 *

LDA #$3
JSR CHKMEM
LDA TXTPTR+l
PHA
LDA TXTPTR
PHA
LDA CURLIN+!
PHA
LDA CURLIN
PHA
LDA #GOSUB
PHA
JSR CGOTO
JMP NEWSTT

Number of variables to stack.
See if enough room on stack.
Save TXTPTR on the stack.

Save the current line
number on the stack.

Save the GOSUB token
on the stack.
Use CGOTO to find the line.
Execute the line.

2280 *
2290 *
2300 *
2310 *
2320 *
2330 *
2340 *

This routine i s the heart of the program.
It evaluates the number, variable or
formula that follows the appropriate
token and converts the number into a
two-byte integer that is stored in
LINNUM and LINNUM+l {$SO and $Sl).

23SO *
2360 EVLNUM JSR CHRGET
2310 EVLNM2 JSR FRMEVL
2380 JMP GETADR
2390 *
2400 *

Set TXTPTR t o next character.
Evaluate formula.
Convert to integer and store.

2410 * This is the message printing subroutine.
2420 *
2430 MSGPRT STA PNTR
2440 STY PNTR+l
24SO LDY #$0
2460 LOOP LDA {PNTR),Y
2410 BEQ ENDPRT

03S6- 8S 08
03S8- 84 09
03SA- AO 00
03SC- Bl 08
03SE- FO OB
0360- 20 ED
0363- E6 08
036S- DO FS
0361- E6 09
0369- DO Fl
036B- 60

FD 2480 JSR GOUT
2490 INC PNTR
2SOO BNE LOOP
2S10 INC PNTR+l
2S20 BNE LOOP
2S30 ENDPRT RTS
2S40 *
2SSO *
2S60 * This is the text printed out by this program.
2Sl0 *

036C- C3 CF CD
036F- DO DS D4
0372- CS C4 AO
03lS- Cl CF D4
0318- CF AC AO
03lB- Cl CF D3
03lE- DS C2 AO
0381- Cl CE C4
0384- AO CC C9
0381- D3 D4 2S80 TEXT
0389- 8D 8D 2S90
038B- C2 D9 AO
038E- CA DS CC
0391- CS D3 AO
0394- C8 AE AO
0391- Cl C9 CC
039A- C4 CS D2 2600
039D- 8D 2610
039E- C3 CF DO
03Al- D9 D2 C9
03A4- Cl CB D4

.AS -"COMPUTED GOTO, GOSUB AND LIST"

.HS 8D8D

.AS -"BY JULES H. GILDER"

.HS 8D

156 I Chapter 8

03A7- AO A8 C3
03AA- A9 AO Bl
03AD- B9 B8 B2 2620
03BO- 8D 2630
03Bl- Cl CC CC
03B4- AO D2 C9
03B7- C7 C8 D4
03BA- D3 AO D2
03BD- CS D3 CS
03CO- D2 D6 CS
03C3- C4 2640
03C4- 8D 8D 8D 26SO
03C7- D2 CS Cl
03CA- C4 D9 AE 2660
03CD- 8D 8D 00 2670

.AS -"COPYRIGHT (C) 1982"

.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D

.AS -"READY."

.HS 8D8DOO

To use the program, it should be loaded and then activated with a CALL 728.
The format to be used for the commands is: &LIST X, &LIST X,Y, &Garo X
and &GOSUB X. The presence or absence of spaces is irrelevant and X and Y can
be numbers, variables or mathematical formulas.

POKEing two bytes at a time

If you've done some Applesoft programming, I'm sure you've had occasion to
store information in memory that had a value larger than 255. Since Applesoft only
allows you to POKE quantities up to 255 into any memory location, you generally
have to convert the value to two bytes and POKE each in separately. The code to do
the job would look something like this:

IOB = 32767
20 Y = INT (B/256)
30 X = B - Y * 256
40 POKE A,X : POKE A+ 1, Y

where Bis the number to be stored and Xis the low byte and Y is the high byte.
That's an awful lot of program code for one simple operation. Besides, how many
of you would remember exiwtly what the formulas are for X and Y? And how
much time would be lost while you tried to figure them out? Wouldn't it be a lot
more convenient to write something like this:

10 B = 32767
20&POKEA,B

to accomplish the same task? Sure it would, and that's what prompted me to write
the DOUBLE BYTE POKE program.

This program starts out the same way most programs that use the ampersand do,
it sets up the ampersand jump locations (lines 1410 to 1460) so the computer will
jump directly to the appropriate place in the program when the ampersand is
encountered. Then the screen is cleared and the program title is printed out (lines
1470 to 1500).

The start of the routine that actually does the processing is on line 1530, where

--

Expanding Applesoft Basic I 157

the POKE token is loaded into the accumulator in preparation for a subroutine
jump to SYNCHR (line 1540). As was mentioned in earlier programs, SYNCHR
compares the accumulator with what is at the TXTPTR. If they match, the program
returns to the caller and proceeds. If not, a syntax error is generated and program
execution is halted.

In line 1550, the expression immediately following the POKE token is evaluated,
and the results are placed in the floating point accumulator. From there, GETADR
(line 1560) converts the number to a two-byte integer and stores the result in
LINNUM as well as another set of page zero locations, called PNTR (lines 1570 to
1600). The syntax for the POKE statement requires that a comma follow the first
expression so a check for a comma is made in line 1610 by jumping to an Applesoft
routine, CHKCOM, at $DEBE.

If the comma is not present, a syntax error is generated and program execution
stops. Otherwise, we get to the heart of the program. Line 1610 once again uses the
FRMEVL routine to get the value of the expression that follows the comma. And
once again GETADR is used to put it into a form that we can use (line 1630). Now
that we have two bytes that represent the first storage location, and two bytes that
represent the data to be stored, it is a simple matter to store both bytes of data in
their appropriate locations. This is done in lines 1640 to 1690.

004C
OOB9-

0006-
0050-
OOB1-
00B 7-
03F5-
DD7B
DEBE
DECO
E752-
FC58-
FDED-

1000 *************************************
1010 *** ***
1020 *** DOUBLE BYTE POKE ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110
1120 *
1130 *

.OR $300

1140 * CONSTANTS
1150 *
1160 JUMP .EQ $4C
1170 POKE .EQ $B9
1180 *
1190 *
1200 * EQUATES
1210 *
1220 PNTR
1230 LINNUM
1240 CHRGET
1250 CHRGOT
1260 AMPER
1270 FRMEVL
1280 CHKCOM
1290 SYNCHR
1300 GETADR
1310 HOME
1320 GOUT
1330 * .
1340 *

. EQ $6

. EQ $50

.EQ $B1

.EQ $B7

.EQ $3F5

.EQ $DD7B

.EQ $DEBE

.EQ $DECO

.EQ $E752

.EQ $FC58

.EQ $FDED

1350 * This section of code sets up the ampersand
1360 * jump vector and prints out the program
1370 *title. When the READY. prompt is
1380 * displayed, the user knows the program

-- ,

158 I Chapter 8

1390 * is active and ready to use.

0300- A9 4C
0302- 8D FS 03
030S- A9 19
0307- 8D F6 03
030A- A9 03
030C- 8D F7 03
030F- 20 S8 FC
0312- A9 S8
0314- AO 03
0316- 4C 42 03

0319- A9 B9
031B- 20 CO DE
031E- 20 7B DD
0321- 20 S2 E7
0324- AS SO
0326- 8S 06
0328- AS Sl
032A- 8S 07
032C- 20 BE DE
032F- 20 7B DD
0332- 20 S2 E7
033S- AO 00
0337- B9 SO 00
033A- 91 06
033C- C8
033D- CO 02
033F- DO F6
0341- 60

1400 *
1410
1420
1430
1440
14SO
1460
1470
1480
1490
lSOO
lSlO *
1S20 *
1S30 START
1S40
lSSO
1S60
1S70
1S80
1S90
1600
1610
1620
1630
1640
16SO LOOPl
1660
1670
1680
1690
1700
1710 *
1720 *

LDA #JUMP
STA AMPER
LDA #START
STA AMPER+l
LDA /START
STA AMPER+2
JSR HOME
LDA #TEXT
LDY /TEXT
JMP MSGPRT

LDA #POKE
JSR SYNCHR
JSR FRMEVL
JSR GETADR
LDA LINNUM
STA PNTR
LDA LINNUM+l
STA PNTR+l
JSR CHKCOM
JSR FRMEVL
JSR GETADR
LDY #$0
LDA LINNUM,Y
STA (PNTR),Y
INY
CPY #$2
BNE LOOPl
RTS

Get a JMP op code and
store it at $3FS.
Store the address of
the start of the
program at $3F6 and
$3F7.
Clear the screen.
Point to the text to
be printed.
Print it.

See if POKE follows
the ampersand.
Evaluate formula.
Convert to integer
Store address of
POKE in PNTR.

Check for a comma .
Evaluate formula .
Convert to integer.
Zero offset.
Get value to be POKEd.
POKE it.
Increment offset.
Done yet?
No, get next value.
Yes, return.

1730 * This is the message printing subroutine.

0342- 8S
0344- 84
0346- AO
0348- Bl
034A- FO
034C- 20
034F- E6
03Sl- DO
03S3- E6
03SS- DO
03S7- 60

1740 *
06 17SO MSGPRT
07 1760
00 1770
06 1780 LOOP2
OB 1790
ED FD 1800
06 1810
FS 1820
07 1830
Fl 1840

18SO ENDPRT
1860 *
1870 *

STA PNTR
STY PNTR+l
LDY #$0
LDA (PNTR) ,Y
BEQ ENDPRT
JSR COUT
INC PNTR
BNE LOOP2
INC PNTR+l
BNE LOOP2
RTS

1880 * This is the text printed out by thi s program.
1890 *

03S8- C4 CF DS
03SB- C2 CC CS
03SE- AO C2 D9
0361- D4 CS AO
0364- DO CF CB
0367- CS 1900 TEXT
0368- 8D 8D 1910
036A- C2 D9 AO
036D- CA DS CC
0370- CS D3 AO
0373- C8 AE AO
0376- C7 C9 CC
0379- C4 CS D2 1920
037C- 8D 1930
037D- C3 CF DO
0380- D9 D2 C9
0383- C7 C8 D4
0386- AO A8 C3
0389- A9 AO Bl
038C- B9 B8 B2 1940
038F- 8D 19SO
0390- Cl CC CC

.AS -"DOUBLE BYTE POKE"

.HS 8D8D

.AS - "BY JULES H. GILDER"

.HS 8D

.AS -"COPYRIGHT (C) 1982"

.HS 8D

0393- AO D2 C9
0396- C7 CB D4
0399- D3 AO D2
039C- CS D3 CS
039F- D2 D6 CS
03A2- C4 1960
03A3- 8D 8D 8D 1970
03A6- D2 CS Cl
03A9- C4 D9 AE 1980
03AC- 8D 8D 00 1990

Expanding Applesoft Basic I 159

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D

.AS -"READY."

.HS 8D8DOO

Thking a double PEEK at memory
Now that we've learned how to store information in memory two bytes at a time,

it sure would be handy to be able to retrieve it the same way. With this program, we
are going to look at another way of passing data between machine language pro
grams and Applesoft programs. We're going to use the USR (X) function of Apple
soft.

Once again, the task we wish to perform - a double byte peek - can be done in
Applesoft . The following line of Applesoft code shows you how:

10 X = PEEK (A) + 256 *PEEK (A+ 1)

Now I'll admit that this is not as difficult or complicated as what was required for
the POKE statement, but it sure would be a whole lot easier to simply write:

10 X = USR (A)

to get the same result. The USR function in Applesoft has three characteristics
about it. First, when it is encountered, the value of the expression that is within the
parentheses is placed in the floating point accumulator. Second, the computer
automatically jumps to location $A on page zero. There, in locations $A through
$C, Applesoft expects to find a jump op code and the address of the machine
language program that will do the processing. Thus, the first thing that our pro
gram should do, is to set up the USRjump locations (lines 1330 to 1380). When this
is done, the program title and READY prompt are printed out (lines 1390 to 1420).
The third, and final, thing that the USR function does is it passes a numerical value
back to Applesoft through the floating point accumulator.

The routine that does the processing, whose address is stored in locations $B
and $C, begins on line 1490. Here the GETADR routine is used to retrieve the value
that has already been stored in the floating point accumulator. GETADR puts the
address of the location of interest into LINNUM as two consecutive bytes, low-byte
first, so LINNUM can be used as a pointer to the data we need.

Lines 1500 to 1550 retrieve the data we're interested in and store it in the floating
point accumulator. Line 1560 sets the Carry bit so the routines that process the data
that is in the FAC will know that we are interested only in positive numbers. If this
were not done, numbers greater than 32767 would come back as negative numbers.

160 I Chapter 8

Next, the exponent of the floating point number is set to 216 by loading a $90 into
the X-register and a jump is made to FLOAT2 (lines 1570 and 1580), where the
number is processed so that it can be handed back to Applesoft.

0006-
0008-
OOOA-
00 SO-
009D
E 7S2-
EBAO
FC S 8-
FDED-

0300- A9
0302- SS
0304- A9
0306- SS
0308- A9
030A- SS
030C- 20
030F- A9
0311- AO
0313- 4C

4C
OA
16
OB
03
oc
SS FC
40
03
2A 03

S2 E7
00
so
9F

1000 *************************************
1010 *** ***
1020 *** DOUBLE BYTE PEEK ***
1030 *** ***
1040 *** COPYRIGHT (Cl 1982 BY ***
lOSO *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110
1120 *
1130 *

.OR $300

1140 * EQUATES
llSO *
1160 PNTR
1170 TEMP
1180 USR
1190 LINNUM
1200 FAG
1210 GETADR
1220 FLOAT2
1230 HOME
1240 GOUT
12SO *
1260 *

.EQ $6

.EQ $8

. EQ $A

. EQ $SO

. EQ $9D

.EQ $E7S2

.EQ $EBAO

.EQ $FCS8

.EQ $FDED

1270 * This section of code sets up the USR
1280 * jump vector and prints out the program
1290 * title. When the READY. prompt i s
1300 * dis played, the user knows t he progr am
1310 * i s acti ve and ready t o use .
1320 *
1330
1340
13SO
1360
1370

LDA #$4C
STA USR
LDA #START
STA USR+l
LDA /START
STA USR+2
JSR HOME
LDA #TEXT
LDY /TEXT
JMP MSGPRT

Ge t a JMP op code
store it at $A.
Store the address of
the start of the
program at $B and

and

$C.
1380
1390
1400
1410
1420
1430 *
1440 *

Cl ear the screen.
Point to the text to
be printed.
Print i t.

14SO * This i s the r outine that ge t s the
1460 * address pair to be looked at and
1470 * retrieves the information stored their.
1480 *
1490 START
l SOO
l SlO
1S20
1S30
1S40
l SSO
1S60
1S70

J SR GETADR
LDY #$0
LDA (LINNUM), Y
STA FAC+2
INY
LDA (LINNUM) , Y
STA FAC+l
SEC

Convert t o integer
Zero of f set.
Get l ow byte and
store it in FAG.

Get high byte and
s tore i t i n FAG .
Se t f or pos i t ive numbers only.
Set up X for FLOAT2.

0316- 20
0319- AO
031B- Bl
031D- SS
031F- CS
0320- Bl SO
0322- SS 9E
0324- 38
032S- A2 90
0327- 4C AO EB 1S80

1S90 *
1600 *

LDX #$90
JMP FLOAT2 Convert t o floating poi nt.

032A- SS 06
032C- 84 07
032E- AO 00

1610 * This is the message pri nt ing subr outine .
1620 *
1630 MSGPRT STA PNTR
1640 STY PNTR+l
16SO LDY #$0

0330- Bl 06 1660 LOOPZ LDA (PNTR),Y
033Z- FO OB 1670 BEQ ENDPRT
0334- ZO ED FD 1680 JSR GOUT
0337- E6 06 1690 INC PNTR
0339- DO FS 1700 BNE LOOPZ
033B- E6 07 1710 INC PNTR+l
033D- DO Fl 17ZO BNE LOOPZ
033F- 60 1730 ENDPRT RTS

1740 *
17SO *

Expanding Applesoft Basic I 161

1760 * This is the text printed out by this program.
1770 *

0340- C4 CF DS
0343- CZ CC CS
0346- AO CZ D9
0349- D4 CS AO
034C- DO CS CS
034F- CB 1780 TEXT .AS -"DOUBLE BYTE PEEK"
03SO- 8D 8D 1790 . HS 8D8D
03SZ- CZ D9 AO
03SS- CA DS CC
03S8- CS D3 AO
03SB- C8 AE AO
03SE- C7 C9 CC
0361- C4 CS DZ 1800 .AS -"BY JULES H. GILDER"
0364- 8D 1810 .HS 8D
036S- C3 CF DO
0368- D9 DZ C9
036B- C7 C8 D4
036E- AO A8 C3
0371- A9 AO Bl
0374- B9 B8 BZ 18ZO . AS -"COPYRIGHT (C) 198Z"
0377- 8D 1830 .HS 8D
0378- Cl CC CC
037B- AO DZ C9
037E- C7 C8 D4
0381- D3 AO DZ
0384- CS D3 CS
0387- DZ D6 CS
038A- C4 1840 .AS -"ALL RIGHTS RESERVED"
038B- 8D 8D 8D 18SO .HS 8D8D8D
038E- DZ CS Cl
0391- C4 D9 AE 1860 .AS -"READY."
0394- 8D 8D 00 1870 .HS 8D8DOO

The DOUBLE BYTE PEEK program is activated by BLOADing it and then
doing a CALL 768. This just sets up the appropriate pointers and returns control to
the calling program or mode. The syntax for using this program, as was illustrated
earlier, is: X = USR (A) or PRINT USR (A), where A can be a number, variable
or mathematical formula.

Running two Applesoft programs in memory together
By combining the use of the ampersand and the USR function with a little

knowledge about how Applesoft stores programs in memory, it is possible to write
an assembly language program that will enable two Applesoft programs to be
stored in memory at the same time, with direct acl;css to either one. The programs
can be treated as completely separate entities, or they can share variables between
them. You can even have one program call and execute the other, leaving all
variables intact.

When the APPLESOFT PROGRAM SHARER program is run, by BLOADing
it and doing a CALL 37888, the first thing the program does is to protect itself from

162 I Chapter 8

being wiped out by the strings of a running Applesoft program. Because of the
length of the program, it cannot sit on page three and must therefore be located in
high memory. I have placed it just below DOS at $9400. Thus, the first thing that
the program does is to lower HIMEM from its current value, which is assumed to
be $9600, to $9400 (lines 1390 and 1400). The next thing that is done is to set up the
jump locations for both the ampersand and the USR commands (lines 1410 to 1510) .
Finally, the program title and instructions telling the user to load the first program,
are displayed (lines 1520 to 1570.

This program makes good use of the fact that where the computer jumps to when
the ampersand is encountered, depends on what is in locations $3F6 and $3F7.
After each phase of the program, it updates the values stored there and shows you a
way of using the ampersand for multiple routines without the need of passing
variables via the ampersand. When the user was told to load the first program, he
was also told to press the '&' key when he finished . When that is done, the
computer jumps to line 1650, where a little manipulation of Applesoft pointers
takes place.

In lines 1650 to 1680, TXTTAB ($67 and $68) the pointer that indicates where an
Applesoft program starts, is stored in a pair of page zero locations called BEGINl,
for use later on. Next we find the end of the program so that we can hide the
program from the Applesoft interpreter. We do this by getting the end of program
pointer (PRGEND), and storing it in the beginning of program pointer (TXT
TAB). At the same time, this information is also stored in another pair of page zero
locations called BEGIN2 (lines 1690 to 1740).

Once the pointers have been changed, the program sets the ampersand jump
locations to point to the next section of code to be executed (lines 1750 to 1780).
Then the user is told to load the second program and press the ampersand key when
it has been done (lines 1790 to 1830). Before returning control to the user, so he can
load in the second program, the program marks the beginning of the second
Applesoft program by storing a zero in the location that immediately precedes the
start of the second program. This location is found by subtracting one from
PRGEND (lines 1840 to 1860), which points to the end of the first program and the
beginning of the second program. Next, since the accumulator still contains a zero
that was placed there in the message printing routine, we transfer the accumulator
to the Y-register (line 1870) to set the offset to zero and then store the zero in the
accumulator in the location that precedes the start of the program (line 1880).

Normally it is not necessary to do this, because this location will contain the last
of the three zero bytes that mark the end of the first program. However, if this
program is called after a NEW has been executed, as you will recall from our
earlier discussions, the normal end of program pointer is incremented by one byte,
and thus the byte we're interested is no longer a zero. So, instead of testing for a
NEW or an FP, as we did with the Applesoft Append program, we just store the
zero there all the time. After the zero has been stored, the program jumps to the
Applesoft NEW routine ($D649) and sets up all of the Applesoft pointers and
registers so that the new program can be loaded without problems (line 1890).

Expanding Applesoft Basic I 163

After the second program has been loaded and the ampersand key has been
pressed, the program jumps to line 1970 where the user is told (lines 1970 to 2010)
that everything has been done and that now all that he has to do to switch between
the two Applesoft programs is to press the ampersand key. Next, the ampersand
jump locations are updated once again so that they point to another routine, this
time to SWITCH which begins on line 2120.

As the name implies, SWITCH is the routine that switches between the two
Applesoft programs. Basically, it sets up the ampersand key as a toggle between the
two programs, so that no matter what program is currently available, when the
ampersand key is pressed, the other one becomes usable. Upon entering this
routine, BEGINl always contains the starting address in memory, of the next
program to be made available. In lines 2120 to 2170, the address in BEGINl is
placed in Applesoft's start of program pointer (TXTTAB) and also stored on the
stack temporarily. Next, in lines 2180 to 2210, the address that was in BEGIN2 is
moved to BEGINl so that the program it represents will be the next one to be
loaded. Then, the address of the first program is retrieved from the stack and stored
in BEGIN2 (lines 2220 to 2250).

How the two programs interact
If you've been paying close attention, you may have noticed that while we've

been doing a lot of work with the beginning of program pointers, we've done
virtually nothing with the end of program pointers. A logical question that may
arise in your mind is, ''Since the end of program pointer is pointing to the end of
the second program (you did realize that didn't you) , when the beginning of pro
gram pointer points to the first program, won't we be able to list both programs
together, as if they had been append to each other?"

That's a good question, and while the programs do follow each other in memory,
they have not been appended to one another. However, if you save the program out
to tape or disk while the first program is being pointed to, both programs will be
saved, but still only one will list. The reason for this is simple. The save routines
work only with the start and end of program pointers, which at this point in time
point to the start of the first program and the end of the second program. The LIST
and RUN commands, however, only use the start of program pointer. To find the
end of the program for these commands, Applesoft does not rely on the end of
program pointer, but rather uses an end of program marker. This marker consists
of three consecutive memory locations that each contain a zero. This marker is
made up of the zero that terminates the last line of the program, and two zeros that
are stored where the next line pointer would normally be stored.

In the Applesoft Append program, we set the pointer to the beginning of the
second program to the location where the two zeros are normally stored. In this
program, the second program pointer, points past these zeros, leaving them intact,
resulting in the separation of the two programs.

164 I Chapter 8

Letting one program call the other
If you want one program to call the other automatically, with the variables still

intact, this can be done with the USR function. Simply use a statement like the
following one:

lOX = USR(A)

where A is a number, variable or mathematical expression that represents the line
number you want the second program to start executing with.

The routine that handles the USR interface starts on line 2330 of the program
listing, and is called USRGaID. This short routine first does a JSR to SWITCH,
where the pointers are adjusted so that the second program becomes active. Then
the line number at which execution is to begin is retrieved from the floating point
accumulator and placed, as a two-byte integer, into LINNUM (line 2340). Finally,
a jump is made to Applesoft's Garo routine (line 2350), which goes to the line
number stored in LINNUM. This causes the second program to start executing
without resetting the values of the variables.

The subroutine ENDMSG, which begins on line 2420, is used several times to
print out the phrase, "AND PRESS THE ' & ' KEY." A second entry point,
ENDMSG2, is use to print out only a part of the phrase. This is done by setting the
accumulator to the value of the starting address before jumping to it. It is used here
to cut off the word ''AND" . By doing this, some memory space was saved, because
extra text was not required.

1000 *************************************
1010 *** ***
1020 *** APPLESOFT PROGRAM SHARER *** 1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 .OR $9400
1120 .TA $800
1130 *
1140 * EQUATES
1150 *

0006- 1160 BEGINl .EQ $6
0008- 1170 BEGIN2 . EQ $8
OOOA- 1180 USR .EQ $A
0018- 1190 TXTPTR .EQ $18
0050- 1200 LINNUM .EQ $50
0067- 1210 TXTTAB .EQ $67
0073- 1220 HIMEM .EQ $73
OOAF- 1230 PRGEND .EQ $AF
03F5- 1240 AMPERSD .EQ $3F5
D649- 1250 NEW .EQ $D649
D944- 1260 GOTO .EQ $D944
E752- 1270 GETADR .EQ $E752
FC58- 1280 HOME .EQ $FC58
FDED- 1290 GOUT .EQ $FDED

1300 *
1310 *

9400- A9 94
9402- BS 74
9404- A9 4C
9406- AO 2C
940B- A2 94
940A- BS OA
940C- BD F5 03
940F- BC F6 03
9412- BE F7 03
941S- A9 92
9417- AO 94
9419- BS OB
941B- B4 OC
941D- 20 SB FC
9420- A9 BB
9422- AO 94
9424- 20 AS 94
9427- A9 Bl
9429- 4C 9B 94

942C- AS 67
942E- A4 6B
9430- BS 06
9432- B4 07
9434- AS AF
9436- A4 BO
943B- BS 67
943A- BS OB
943C- B4 6B
943E- B4 09
9440- A9 62
9442- AO 94
9444- BD F6 03
9447- BC F7 03
944A- A9 10
944C- AO 9S
944E- 20 AS 94
94Sl- A9 B2
94S3- 20 9B 94
94S6- C6 AF
94SB- DO 02
94SA- C6 BO
94SC- AB
94SD- 91 AF
94SF- 4C 49 D6

Expanding Applesoft Basic I I 65

1320 * This section initializes the program
1330 *by-lowering HIMEM to protect the program
1340 * and setting up the ampersand (&) and
13SO * USR jump vectors. It then prints out
1360 * the title and the user is told to load
1370 * in the first program.
13BO *
1390
1400
1410
1420
1430
1440
14SO
1460
1470
14BO
1490
lSOO
lSlO
1S20
1S30
1S40
lSSO
1S60
1S70
lSBO *
1S90 *

LDA #$94
STA HIMEM+l
LDA #$4C
LDY #NXTPROG
LDX /NXTPROG
STA USR
STA AMPERSD
STY AMPERSD+l
STX AMPERSD+2
LDA #USRGOTO
LDY /USRGOTO
STA USR+l
STY USR+2
JSR HOME
LDA #TEXTl
LDY /TEXTl
JSR MSGPRT
LDA #$Bl
JMP ENDMSG

Lower HIMEM to $9400
to protect this program.
Set up the & and USR
jump vectors to
point to the appropriate
places in memory.

Clear the screen.
Point to the message
to be printed.
Print it.
Tell user which program.
Finish message

1600 * Here the first program that was loaded
1610 * in is hidden and the user is told to
1620 * load in the second program. Then the
1630 * ampersand vector is set to jump to LOADED.
1640 *
16SO NXTPROG LDA TXTTAB
1660 LDY TXTTAB+l
1670 STA BEGINl
16BO STY BEGINl+l
1690 LDA PRGEND
1700 LDY PRGEND+l
1710 STA TXTTAB
1720 STA BEGIN2
1730 STY TXTTAB+l
1740 STY BEGIN2+1
17SO LDA #LOADED
1760 LDY /LOADED
1770 STA AMPERSD+l
17BO STY AMPERSD+2
1790 LDA #TEXT2
lBOO LDY /TEXT2
lBlO JSR MSGPRT
1B20 LDA #$B2
1B30 JSR ENDMSG
1B40 DEC PRGEND
lBSO BNE MARKIT
1B60 DEC PRGEND+l
1B70 MARKIT TAY
lBBO STA (PRGEND),Y
1B90 JMP NEW
1900 *
1910 *

The s tarting address of
program 1 is stored
for later use.

The ending address of
program 1 is made the
beginning address for
program 2 and is also
saved for later use.

Ampersand vector
is reset to point
to LOADED.

User is told to
load .the second
program and then
to press the '&' key .

Mark the start
of the second
program by storing
a zero in the
first location.
NEW before loading program 2.

1920 * Both programs have now been loaded so
1930 * tell the user how to switch between them
1940 * and reset the ampersand vector to the
19SO * program switching routine.
1960 *
1970 LOADED
19BO

9462- A9 lF
9464- AO 9S
9466- 20 AS
9469- A9 4D
946B- 20 AO
946E- A9 79
9470- AO 94
9472- BD F6

94 1990
2000

94 2010
2020
2030

03 2040

LDA #TEXT3
LDY /TEXT3
JSR MSGPRT
LDA #TEXT4+4
JSR ENDMSG2
LDA #SWITCH
LDY /SWITCH
STA AMPERSD+l

Point to text to
be printed.
Print it.
Point to last part
and print that too.
Set up the ampersand
vector to jump to
the SWITCH routine.

166 I Chapter 8

9475- 8C F7 03 2050
9478- 60 2060

2070 *
2080 *

STY AMPERSD+2
RTS

2090 * This is the routine that switches the
2100 * availability of the programs in memory.

9479- AS 06
947B- 8S 67
947D- 48
947E- AS 07
9480- 8S 68
9482- 48
9483- AS 08
948S- A4 09
9487- 8S 06
9489- 84 07
948B- 68
948C- 8S 09
948E- 68
948F- 8S 08
9491- 60

2110 *
2120 SWITCH
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270 *
2280 *

LDA BEGIN!
STA TXTTAB
PHA
LDA BEGINl+l
STA TXTTAB+l
PHA
LDA BEGIN2
LDY BEGIN2+1
STA BEGIN!
STY BEGINl+l
PLA
STA BEGIN2+1
PLA
STA BEGIN2
RTS

Get the address of
the inactive program
and save it and also
make it the active
program.

Transfer address o.f
former active program
to inactive location.

Retrieve address of
current active program
and put it in inactive
location.

2290 * This is where the USR function is
2300 * implemented. The programs are first
2310 * switched and then run by executing a GOTO.

9492- 20 79 94
949S- 20 52 E7
9498- 4C 44 D9

2320 *
2330 USRGOTO JSR SWITCH
2340 JSR GETADR
2350 JMP GOTO
2360 *
2370 *

Switch programs.
Get the GOTO line number
and go to it.

2380 * This routine prints out the program
2390 * number being loaded and tell the user
2400 * to press the '&' key.
2410 *

949B- 20 ED FD 2420 ENDMSG JSR GOUT
LDA #TEXT4

ENDMSG2 LDY /TEXT4
949E- A9 49 2430
94AO- AO 95 2440
94A2- 4C AS 94 2450

2460 *
2470 *

JMP MSGPRT

Print number in accumulator.
Point to rest of
text and print it.

2480 * This is the message printing routine.

94AS- 8S 18
94A7- 84 19
94A9- AO 00
94AB- Bl 18
94AD- FO OB
94AF- 20 ED
94B2- E6 18
94B4- DO FS
94B6- E6 19
94B8- DO Fl
94BA- 60

2490 *
2500 MSGPRT
2510
2520
2530 LOOP
2540

FD 2550
2560
2570
2580
2590
2600 ENDPRT
2610 *
2620 *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR) , Y
BEQ ENDPRT
JSR GOUT
INC TXTPTR
BNE LOOP
INC TXTPTR+l
BNE LOOP
RTS

2630 * These are the various text messages
2640 * printed out by this program.

94BB- Cl DO DO
94BE- CC CS D3
94Cl- CF C6 D4
94C4- AO DO D2
94C7- CF C7 D2
94CA- Cl CD AO
94CD- D3 C8 Cl

2650 *

94DO- D2 CS D2 2660 TEXT!
94D3- 8D 8D 2670
94DS- C2 D9 AO
94D8- CA DS CC
94DB- CS D3 AO

.AS -"APPLESOFT PROGRAM SHARER"

.HS 8D8D

94DE- C8 AE AO
94E1- C7 C9 CC
94E4- C4 CS D2 2680
94E7- 8D 2690
94E8- C3 CF DO
94EB- D9 D2 C9
94EE- C7 C8 D4
94F1- AO A8 C3
94F4- A9 AO Bl
94F7- B9 B8 B2 2700
94FA- 8D 2710
94FB- Cl CC CC
94FE- AO D2 C9
9S01- C7 C8 D4
9S04- D3 AO D2
9S07- CS D3 CS
9SOA- D2 D6 CS
9SOD- C4
9SOE- 8D 8D
9S10- 8D
9S11- CC CF Cl
9S14- C4 AO DO
9S17- D2 CF C7
9S1A- D2 Cl CD

2720
2730
2740 TEXT2

9S1D- AO 27SO
9S1E- 00 2760
9S1F- 8D 8D 2770 TEXT3
9S21- C4 CF CE
9S24- CS AO AD
9S27- AO D4 CF
9S2A- AO D3 D7
952D- C9 D4 C3
9S30- C8 AO C2
9S33- CS D4 D7
9S36- CS CS CE 2780
9S39- AO DO D2
9S3C- CF C7 D2
9S3F- Cl CD D3
9542- AC AO CA
9S4S- DS D3 D4 2790
9S48- 00 2800
9S49- AO Cl CE
9S4C- C4 AO DO
954F- D2 CS D3
9S52- D3 AO D4
9SS5- C8 CS AO
9SS8- A7 A6 A7
95SB- AO CB CS
9SSE- D9 AE 2810 TEXT4
9S60- 8D 8D 00 2820

Expanding Applesoft Basic I 167

.AS -"BY JULES H. GILDER"

.HS 8D

.AS -"COPYRIGHT (C) 1982"

. HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D

.HS 8D

.AS -"LOAD PROGRAM "

.HS 00

.HS 8D8D

.AS -"DONE - TO SWITCH BETWEEN"

.AS -" PROGRAMS, JUST"

.HS 00

.AS-" AND PRESS THE '&' KEY."

.HS 8D8DOO

When using the APPLESOFT PROGRAM SHARER, it is very important that
once the second program has been loaded, no changes are made to the first pro
gram. If you make changes, you'll move the second program away from the loca
tion that has already been specified as the start of the program. If changes must be
made, do it on the original version of the program and then reload it and the second
program as was previously described.

For those of you who are looking for a challenge and something interesting to
do, try modifying the program so that it can be switched, sequentially, between any
number of programs (assuming there's room in memory for all of them). If you
want an even tougher assignment, pe!"mit the switching between programs on a
random basis.

168 I Chapter 8

Add Applesoft function keys to your computer
Applesoft is quite a versatile version of BASIC with commands for changing the

display mode from normal to inverse and flashing. Applesoft also has two com
mands that provide the ability to place the cursor at a specific position. Instead of
having these as separate commands, some people prefer the approach that Com
modore has taken in their computers, where a single character can be printed out to
determine the display mode and relative cursor movements (move up three and left
two).

With the program, APPLESOFT FUNCTION KEYS, you can now add this
capability to your Apple. The program steals control away from both the input and
the output. It monitors the input and looks for control characters that permit the
user to switch between three display modes. One is the fully OPERATIONAL
mode, which is entered with a Control-0, where all of the codes that have been
entered are implemented. The second is a VIEW mode, which is entered with a
Control-V. In the viewing mode, all of the control characters that are entered are
visible on the screen in inverse, so that when the program is listed, you can see
exactly what is going to happen. The third mode is a QUIT, or normal mode where
the control characters are invisible. In this mode, the Apple is restored to its
normal output configuration. This mode is entered by typing a Control-Q.

Since this program is too long to reside in page three of memory, it is designed to
operate in high memory starting at location $9400. As with the previous program,
the first thing this one does when it is run, is to protect itself from Applesoft
programs by lowering HIMEM to $9400 (lines 1620 and 1630). Next the title of the
program is printed out along with the word READY, so the user knows the program
has been activated (lines 1640 to 1670). The final phase of this initialization process
begins on line 1680, where control is taken away from the normal input routines
and given to a routine that starts on line 2890. This is the routine that permits the
switching between display modes by checking for the Control-0, Control-V and
Control-Q characters, and jumping to the appropriate display mode routine.

Upon returning from the initialization routine (line 1780), everything appears
normal, and will remain that way until one of the three previously mentioned
control keys is pressed. If a Control-0 is pressed, to place the program in the
OPERATIONAL mode, a jump is made to a subroutine called ACTIVE, that
begins on line 1840. This is the function key interpreter, and is the routine that
should be called whenever the functions that the control keys stand for are to be
executed. Generally, this is only active while the program is running. If you try to
list out a program that uses function keys while in this mode, you'll get some real
wild results.

This program uses a page zero location called FLAG to determine what mode
the character to be printed should be displayed in. The first thing that this routine
does, is to set FLAG for the normal mode by storing an $FF in it (lines 1840 and
1850). Next, a flashing cursor is stored on the screen to mark the position of the
next character to be displayed (lines 1860 and 1870). After that, the output hooks

Expanding Applesoft Basic I l 69

are set so they point to a subroutine labelled START, which is the beginning of the
OPERATIONAL display mode (lines 1880 to 1950). Finally, the accumulator is
loaded with a blank (line 1960), which will be used as the cursor character, when
the program returns to fetch the next character from the keyboard (line 1970). It
might seem like we're using two different techniques to display the same cursor.
The reason is, this last one becomes important when the SAVOUT and INPRTN
entry points are used.

Now that START has been activated, all characters that are to be printed out
must first be tested to see if they are one of the control characters that determine the
display mode or cursor movement. A whole series of comparisons take place
between lines 2100 and 2370 in an effort to identify one of the eleven assigned
control keys. A table of the keys and their functions can be seen below.

KEY HEX CODE FUNCTION

Control-A $81 Move Left

Control-F $86 FLASH

Control-H $88 Back Space

Control-I $89 INVERSE

Control-M $OD Carriage Return

Control-M $80 Carriage Return

Control-N $8E NORMAL

Control-P $90 HOME

Control-S $93 Move Right

Control-W $97 Move Up

Control-Z $9A Move Down

If you look carefully at the chart, you'll notice two things. First of all, you'll see
Control-H defined as performing a back space and Control-M defined as perform
ing a carriage return. These are their normal functions, so you might ask why
bother to includ.e it to begin with. Secondly, you might notice that there are two

170 I Chapter 8

entries for Control-M. To answer the first question, when the OPERATIONAL
mode is active, and inverse or flashing characters are being entered, the control
characters are printed as inverse letters and are not implemented, so if you typed a
carriage return (Control-M) all you'd get is an inverse M on the screen and no
carriage return would be generated. The same is true for the Control-H and its back
space function. The reason for the two Control-M entries is that while the charac
ters that are entered from the keyboard have the high bit set, those that are gener
ated by the computer (such as when a program is listed), do not.

After all of the tests have been performed and it is determined that the character
is not one of the eleven assigned ones, the character is temporarily saved on the
stack (line 2380) and FLAG is tested to see ifthe character to be printed is supposed
to be converted to flashing (lines 2390 to 2400). If it is, control is passed to the
CONVERT routine (line 2410), otherwise the character is pulled off the stack and
it is ANDed with FLAG to convert it to either the normal mode or the inverse mode
(lines 2420 and 2430). Once this adjustment has taken place, the character is
printed out to the video screen (line 2440) and control is returned to the caller via
the RTS in the COUTl routine.

Next, we have a series of three, 3-line routines, whose only purpose is to set the
value of FLAG for the appropriate mode. In the INVERSE and NORMAL rou
tines (lines 2560 and 2630 respectively) , the value that is stored in FLAG is the
value that is ANDed with the character to produce a letter in the desired mode. In
the case of the FLASH routine (line 2490), the value in FLAG is used as an
indicator that another routine has to be used to do the conversion (lines 2400 and
2410).

The routine that does the flashing conversion starts on line 2710, where the
character is retrieved from the stack where it was stored earlier. Next, a test is
performed to see if the character is in the $AO to $BF range and is therefore a
number or a symbol (lines 2720 to 2750). If it is within this range, the character in
the accumulator is Exclusive-ORed with the value $CO and the printed out to the
video screen (lines 2760 and 2770).

If the character being tested in lines 2720 to 2750 is a letter; control is passed to
line 2790, where the letter is Exclusive-ORed with $80, which is the value in FLAG
and then output to the screen (lines 2780 and 2790).

As was mentioned earlier, NWKEYIN, the routine that starts on line 2890, is the
new input routine that checks for Control-0, Control-V and Control-Q being input
from the keyboard. The monitor KEYIN routine is used to get a key press from the
keyboard (line 2900) and the character is then checked to see if it is a Control-0. If
it is, the program jumps to the ACTIVE subroutine in line 1840, otherwise, a check
is made for a Control-V. If it is a Control-V, the program branches to VIEW on line
3030, which is simply a subroutine that changes the output hooks so that they point
to the VIEWCTL routine.

The last test made on a character passing through NWKEYIN is for a Control
Q. If it is a Control-Q, the output hooks are set to the video screen output subrou
tine COUTl. If a character has managed to pass through this routine, it is entered

Expanding Applesoft Basic I 171

unchanged.

VIEWCTL is the subroutine that is used to display the control characters that are
being used as function keys. It is very similar to the program SHOW CONTROL
that we discussed in Chapter 4 and has only been slightly modified for use here.
The modification consists of two parts. The first, does not display the Control-M
character and the second does not permit the display of the Control-@ character.

In line 3250 we check for the presence of a carriage return and if it is found,
bypass the program and print it out. This is a little different than the SHOW
CONTROL program where the inverse M was printed out first and then the car
riage return function was implemented. Next, characters are tested to see if they
are in the control character range of $81 to $9F. This is where the other difference
with the SHOW CONTROL program crops up. In the original, the test was made
from $80 to $9F, to include the Control-@ code as well. If the character is not a
control character, it is printed unchanged, but if it is, the high bit is turned off (line
3330) (which is the equivalent of subtracting $80) and the character is output to the
video display (line 3340).

OOOD-
004C-
0081-
0086-
0088-
0089-
008A-
008D-
008E-
008F -
0090-
0091-
0093-
0096-
0097-
009A-

0006-
0008-
0009-
0018-
0028-

1000 *************************************
1010 *** ***
1020 *** APPLESOFT FUNCTION KEYS ***
1030 *** ***
1040 *** COPYRIGHT (C) 1982 BY ***
1050 *** JULES H. GILDER ***
1060 *** ALL RIGHTS RESERVED ***
1070 *** ***
1080 *************************************
1090 *
1100 *
1110 *
1120 *
1130
1140
1150 *
1160 *
1170 *

.OR $9400

.TA $800

1180 * CONSTANTS
1190 * ..
1200 CNTRLM .EQ $D
1210 JUMP .EQ $4C
1220 CTRLA .EQ $81
1230 CTRLF .EQ $86
1240 CTRLH .EQ $88
1250 CTRLI .EQ $89
1260 CTRLJ .EQ $8A
1270 CTRLM .EQ $8D
1280 CTRLN .EQ $8E
1290 CTRLO .EQ $8F
1300 CTRLP .EQ $90
1310 CTRLQ .EQ $91
1320 CTRLS .EQ $93
1330 CTRLV .EQ $96
1340 CTRLW .EQ $97
1350 CTRLZ .EQ $9A
1360 *
1370 *
1380 * EQUATES
1390 *
1400 FLAG
1410 CURSOR
1420 PRTFLG
1430 TXTPTR
1440 BASL

.EQ $6

.EQ $8

.EQ $9

.EQ $18

.EQ $28

172 I Chapter 8

0036-
0038-
0073-
03DO-
03EA
FBF4-
FC10-
FC1A
FC58-
FD1B
FDED
FDFO-

1450 CSWL
1460 KSWL
1470 HIMEM
1480 WARMDOS
1490 CONNECT
1500 ADVANCE
1510 BS
1520 UP
1530 HOME
1540 KEYIN
1550 GOUT
1560 COUT1
1570 *
1580 *

.EQ $36

.EQ $38

.EQ $73
.EQ $3DO
.EQ $3EA
.EQ $FBF4
.EQ $FC10
.EQ $FC1A
.EQ $FC58
.EQ $FD1B
.EQ $FDED
.EQ $FDFO

1590 * This section steals control of the
1600 * input routine.

9400- A9 94
9402- 85 74
9404- 20 58
9407- A9 04
9409- AO 95
940B- 20 EE
940E- A9 BO
9410- AO 94
9412- 85 38
9414- 84 39
9416- 84 09
9418- AD DO
941B- C9 4C
941D- DO 03
941F- 20 EA
9422- A9 80
9424- 60

1610 *
1620
1630

FC 1640
1650
1660

94 1670
1680
1690
1700
1710
1720

03 1730
1740
1750

03 1760
1770 NODOS
1780
1790 *
1800 *

LDA #$94
STA HIMEM+l
JSR HOME
LDA #TEXT
LDY /TEXT
JSR MSGPRT
LDA #NWKEYIN
LDY /NWKEYIN
STA KSWL
STY KSWL+l
STY PRTFLG
LDA WARMDOS
CMP #JUMP
BNE NODOS
JSR CONNECT
LDA #$80
RTS

Lower HIMEM to $9400
to protect this program.
Clear the screen.
Point to the text
to be printed.
Print it.
Get the address of the
new input routine
and store it in the
input hooks.
Make flag nonzero.
Is DOS present?

No.
Yes, connect to DOS.
Return with null character.

1810 * This routine steals control away
1820 * from the normal output routine.

9425- A9 FF
9427- 85 06
9429- A9 60
942B- 91 28
942D- A9 44
942F- AO 94
9431- 85 36
9433- 84 37
9435- AD DO 03
9438- C9 4C
943A- DO 03
943C- 20 EA 03
943F- A9 AO
9441- 4C 1B FD

9444- C9 86
9446- FO 46
9448- C9 8D
944A- FO 3F
944C- C9 OD
944E- FO 3B
9450- C9 88
9452- FO 37

1830 *
1840 ACTIVE
1850
1860
1870
1880
1890
1900 SAVOUT
1910
1920 INPRTN
1930
1940
1950
1960 NODOS2
1970
1980 *
1990 *

LDA #$FF
STA FLAG
LDA #$60
STA (BASL),Y
LDA #START
LDY /START
STA CSWL
STY CSWL+l
LDA WARMDOS
CMP #JUMP
BNE NODOS2
JSR CONNECT
LDA #$AO
JMP KEYIN

Set mode flag
for normal text.
Store flashing
cursor on the screen.
Get the address of the
start of the program.
Store it in the
output
Check for presence
of DOS.

Connect through DOS.
Set blank as input prompt.
Get the next character.

2000 * This routine replaces the normal
2010 * ouput routine and checks to see
2020 * if any of the Control characters that
2030 * are used as function descriptors are
2040 * being output. If not, the character
2050 * passes through this program
2060 * unchanged and is printed. If so,
2070 * the program jumps to the appropriate
2080 * routine to implement the function.
2090 *
2100 START
2110
2120
2130
2140
2150
2160
2170

CMP #CTRLF
BEQ FLASH
CMP #CTRLM
BEQ PRTRTN
CMP #CNTRLM
BEQ PRTRTN
CMP #CTRLH
BEQ PRTRTN

Is it Ctrl-F?
Yes, flash it.
Is it a carriage
Yes, print it.
Is it a carriage
Yes, print it.
Is it Ctrl-H?
Yes, print it.

return?

return?

9454- C9 89
9456- FO 3B
9458- C9 BE
945A- FO 3C
945C- C9 90
945E- DO 03
9460- 4C 58 FC
9463- C9 97
9465- DO 03
9467- 4C lA FC
946A- C9 9A
946C- DO 05
946E- A9 8A
9470- 4C FO FD
9473- C9 81
9475- DO 03
9477- 4C 10 FC
947A- C9 93
947C- DO 03
947E- 4C F4 FB
9481- 48
9482- AS 06
9484- C9 80
9486- FO 15
9488- 68
9489- 25 06
948B- 4C FO FD

948E- A9 80
9490- 85 06
9492- 60

9493- A9 3F
9495- 85 06
9497- 60

9498- A9 FF
949A- 85 06
949C- 60

2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430

CMP #CTRLI
BEQ INVERSE
CMP #CTRLN
BEQ NORMAL
CMP #CTRLP
BNE CHKCTLW
JMP HOME

CHKCTLW CMP #CTRLW
BNE CHKCTLZ
JMP UP

CHKCTLZ CMP #CTRLZ
BNE CHKCTLA
LDA #CTRLJ
JMP COUTl

CHKCTLA CMP #CTRLA
BNE CHKCTLS
JMP BS

CHKCTLS CMP #CTRLS
BNE CONTIN
JMP ADVANCE

CONTIN PHA
LDA FLAG
CMP #$80
BEQ CONVERT
PLA

2440 PRTRTN
2450 *

AND FLAG
JMP COUTl

2460 *

Expanding Applesoft Basic I 173

Is it Ctrl-I?
Yes, i nverse it.
Is it Ctrl-N?
Yes, make it normal .
Is it Ctrl-P?
No, check if Ctrl-W.
Clear screen.
Is it Ctrl-W?
No , check if Ctrl-Z.
Move cursor up.
Is it Ctrl-Z?
No, check if Ctrl-A.
Make it Ctrl-J.

Is it Ctrl-A?
No, check if Ctrl-S.
Back space.
ls it Ctrl-S?
No, continue processing.
Yes , move cursor right.
Save character.
Get flag and check
for flashing.
Yes, check for numbers.
No flashing.
Adjust for mode.
Print character and r e turn.

2470 * Set FLAG for flashing mode.
2480 *
2490 FLASH
2500
2510
2520 *
2530 *

LDA #$80
STA FLAG
RTS

Set FLAG for
flash mode. 2

2540 * Set FLAG for inverse mode.
2550 *
2560 INVERSE LDA #$3F Set FLAG for
2570 STA FLAG inverse mode.
2580 RTS
2590 *
2600 *
2610 * Set FLAG for normal mode.
2620 *
2630 NORMAL
2640
2650
2660 *
2670 *

LDA #$FF
STA FLAG
RTS

Set FLAG for
normal mode.

2680 * This routine converts the character
2690 * being output to the flashing mode.
2700 *
2710 CONVERT
2720
2730
2740
2750
2760

PLA Retrieve character.
Is it a number
or symbol (in the
range of $AO to $BF).
No, it's alpha.
Fix number.

949D- 68
949E- C9 AO
94AO- 90 09
94A2- C9 CO
94A4- BO 05
94A6- 49 CO
94A8- 4C FO
94AB- 45 06
94AD- 4C FO

FD 2770

CMP #$AO
BCC FIXLTR
CMP #$CO
BCS FIXLTR
EOR #$CO
JMP COUTl
EOR FLAG
JMP COUTl

Print it out.
2780 FIXLTR

FD 2790
2800 *
2810 *

Fix alpha.
Print it out.

94BO- 20 lB FD
94B3- C9 8F

2820 * This is the replacement input routine
2830 * which checks to see if any of the mode
2840 * switching keys (Control-Q, Control-0
2850 * or Control-VJ are being pressed. If
2860 * so, control is passed to the appropriate
2870 * subroutine.
2880 *
2890 NWKEYIN JSR KEYIN
2900 CMP #CTRLO

Read the keyboard.
Was it Ctrl-0?

174 I Chapter 8

94BS- DO 03
94B7- 4C 2S 94
94BA- C9 96
94BC- FO OS
94BE- C9 91
94CO- FO OC
94C2- 60

2910
2920
2930
2940
29SO
2960
2970

BNE CHKCTLV
JMP ACTIVE

CHKCTLV CMP #CTRLV
BEQ VIEW
CMP #CTRLQ
BEQ QUIT
RTS

29SO *
2990 *

No, see if Ctrt-v.
Activate function interpreter.
Was it Ctrl-V?
Yes, show control characters .
Was it Ctrl-Q?
Yes, inactivate program.

3000 * Here the output routine is set up to
3010 * display control characters .
3020 *
3030 VIEW
3040
30SO
3060

LDA #$60 Store flashing
cursor on the screen .
Get new address for
output routine.

94C3- A9 60
94CS- 91 2S
94C7- A9 D9
94C9- AO 94
94CB- 4C 31 94 3070

30SO *
3090 *

STA (BASL), Y
LDA #VIEWCTL
LDY /VIEWCTL
JMP SAVOUT Store address in hooks.

3100 * Here the output hooks are set to
3110 * restore the output hooks to normal.
3120 *
3130 QUIT
3140
31SO
3160

LDA #$60 Store flashing
cursor on the screen.
Put screen address
in the output hooks.

94CE- A9 60
94DO- 91 2S
94D2- A9 FO
94D4- AO FD
94D6- 4C 31 94 3170

31SO *
3190 *

STA (BASL),Y
LDA #COUTl
LDY /COUTl
JMP SAVOUT

94D9- C9 SD
94DB- FO OE
94DD- C9 SS
94DF- FO OA
94El- C9 Sl
94E3- 90 06
94ES- C9 9F
94E7- BO 02
94E9- 29 7F
94EB- 4C FO FD

94EE- SS lS
94FO- S4 19
94F2- AO 00
94F4- Bl lS
94F6- FO OB
94FS- 20 ED FD
94FB- E6 1S
94FD- DO FS
94FF- E6 19
9S01- DO Fl
9S03- 60

9S04- Cl DO DO
9S07- CC CS D3
9SOA- CF C6 D4
9SOD- AO C6 DS
9S10- CE C3 D4
9S13- C9 CF CE
9S16- AO CB CS

3200 * This routine permits the viewing of
3210 * control characters (except null,
3220 * carriage return and backspace) as
3230 * inverse on the screen.
3240 *
32SO VIEWCTL
3260
3270
32SO
3290
3300
3310
3320
3330
3340 PRINTIT
33SO *
3360 *

CMP #CTRLM
BEQ PRINTIT
CMP #CTRLH
BEQ PRINTIT
CMP #$Sl
BCC PRINTIT
CMP #$9F
BCS PRINTIT
AND #$7F
JMP COUTl

Is it carriage return?
Yes, print it.
Is it a backspace?
Yes, print it.
Is it a Control character
in the range of $Sl to $9F?
If not print it.

Otherwise, inverse it.
Print character.

3370 * This is the message printing routine.
33SO *
3390 MSGPRT
3400
3410
3420 LOOP
3430
3440
34SO
3460
3470
34SO
3490 ENDPRT
3SOO *
3S10 *

STA TXTPTR
STY TXTPTR+l
LDY #$0
LDA (TXTPTR) , Y
BEQ ENDPRT
JSR COUT
INC TXTPTR
BNE LOOP
INC TXTPTR+l
BNE LOOP
RTS

3S20 * This is the text printed out by
3S30 * this program.

9S19- D9 D3 3S40 TEXT .AS -"APPLESOFT FUNCTION KEYS"
.HS SDSD 9S1B- SD SD 3SSO

9S1D- C2 D9 AO

Expanding Applesoft Basic I 175

9S20- CA DS CC
9S23- CS D3 AO
9S26- CS AE AO
9S29- C7 C9 CC
9S2C- C4 CS D2 3S60 . AS -"BY JULES H. GILDER"
9S2F- SD 3S70 . HS SD
9S30- C3 CF DO
9S33- D9 D2 C9
9S36- C7 CS D4
9S39- AO AS C3
9S3C- A9 AO Bl
9S3F- B9 BS B2 3SSO .AS -"COPYRIGHT (C) 19S2"
9S42- SD 3S90 .HS SD
9S43- Cl CC cc
9S46- AO D2 C9
9S49- C7 CS D4
9S4C- D3 AO D2
9S4F- CS D3 cs
9SS2- D2 D6 cs
9SSS- C4 3600 .AS -"ALL RIGHTS RESERVED"
9SS6- SD SD SD 3610 .HS SDSDSD
9SS9- D2 CS Cl
9SSC- C4 D9 AE 3620 .AS -"READY."
9SSF- SD 00 3630 .HS SDOO

DECIMAL

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Appendix A

ASCII CODE
CONVERSION TABLE

0 16 32 48 64 80

HEX $0 $10 $20 $30 $40 $50

$0 NUL OLE SPACE 0 @ p

$1 SOH DCl I ' 1 A Q

$2 STX DC2 " 2 B R
$3 ETX DC3 # 3 c s
$4 Ear DC4 $ 4 D T
$5 ENQ NAK % 5 E u
$6 ACK SYN & 6 F v
$7 BEL ETB ' 7 G w
$8 BS CAN (8 H x
$9 HT EM) 9 I y

$A LF SUB * J z
$B VT ESC + '

K [

$C FF FS
' < L \

$D CR 1 GS - = M]
$E so RS > N /\

$F SI us I ? 0 -

177

1

I 96 112

$60 $70

' p
a q
b r

c s
d t

e u

f v

g w
h x
I y

J z
k {
I I

m }
n -
o DE L

AppendixB

APPLESOFT TOKEN LIST

DECIMAL HEX APPLESOFT DECIMAL HEX APPLESOFT
TOKEN TOKEN KEYWORD TOKEN TOKEN KEYWORD

128 $80 END 160 $AO COLOR=
129 $81 FOR 161 $Al POP
130 $82 NEXT 162 $A2 VTAB
131 $83 DATA 163 $A3 HIMEM:
132 $84 INPUT 164 $A4 LOMEM:
133 $8S DEL 16S $AS ONERR
134 $86 DIM 166 $A6 RESUME
13S $87 READ 167 $A7 RECALL
136 $88 GR 168 $A8 STORE
137 $89 TEXT 169 $A9 SPEED=
138 $8A PR# 170 $AA LET
139 $8B IN# 171 $AB GOTO
140 $8C CALL 172 $AC RUN
141 $8D PLOT 173 $AD IF
142 $8E HLIN 174 $AE RESTORE
143 $8F VLIN 17S $AF &
144 $90 HGR2 176 $BO GO SUB
14S $91 HGR 177 $Bl RETURN
146 $92 HCOLOR= 178 $B2 REM
147 $93 HPLOf 179 $B3 STOP
148 $94 DRAW 180 $B4 ON
149 $9S XDRAW 181 $BS WAIT
lSO $96 HTAB 182 $B6 LOAD
lSl $97 HOME 183 $B7 SAVE
1S2 $98 ROT= 184 $B8 DEF
1S3 $99 SCALE= 18S $B9 POKE
1S4 $9A SHI.DAD 186 $BA PRINT
155 $9B TRACE 187 $BB CONT
156 $9C NOTRACE 188 $BC LIST
1S7 $9D NORMAL 189 $BD CLEAR
158 $9E INVERSE 190 $BE GET
1S9 $9F FLASH 191 $BF NEW

178

Applesoft Token List I 179

DECIMAL HEX APPLESOFf DECIMAL HEX APPLESOFf
TOKEN TOKEN KEYWORD TOKEN TOKEN KEYWORD

192 $CO TAB(214 $D6 FRE
193 $Cl ro 215 $D7 SCRN(
194 $C2 FN 216 $D8 PDL
195 $C3 SPC(217 $D9 POS
196 $C4 THEN 218 $DA SQR
197 $C5 AT 219 $DB RND
198 $C6 NOT 220 $DC LOG
199 $C7 STEP 221 $DD EXP
200 $C8 + 222 $DE cos
201 $C9 223 $DF SIN
202 $CA * 224 $EO TAN
203 $CB 225 $El ATN
204 $CC /\ 226 $E2 PEEK
205 $CD AND 227 $E3 LEN
206 $CE OR 228 $E4 STR$
207 $CF > 229 $E5 VAL
208 $DO = 230 $E6 ASC
209 $Dl < 231 $E7 CHR$
210 $D2 SON 232 $E8 LEFT$
211 $D3 INT 233 $E9 RIGHT$
212 $D4 ABS 234 $EA MID$
213 $D5 USR

AppendixC

SHIF"f KEY MODIFICATION FOR
APPLE II AND II PLUS COMPUTERS

The Apple II and II Plus computers do not have any way of allowing the user to
enter upper and lower case letters from the keyboard. While the computer key
board does have a SHIFT key on it, it is only usable to get the alternate characters
on the number, punctuation and M, N and P keys.

It is possible however, to make a very simple, one-wire, modification to your
Apple computer that will allow you, with the aid of an appropriate program, to
determine ifthe SHIFT key has been pressed and then retrieve the character from
the keyboard and adjust it appropriately. We have already spoken about the soft
ware required to do the job in Chapter 5, here are the instructions to modify the
hardware.

Over the years, Apple Computer has made some minor changes to its com
puters, and as a result, newer models of the Apple II Plus have a different keyboard
than the older ones. As a result of this, there are two sets of instructions for the
modification. One for older Apples that have marked on the circuit board REV 6 or
earlier, and one for the later versions which are marked REV 7 or higher. In both
cases, a wire is connected to the SHIFT key on one end and the Game 1/0 socket on
the other. The software that supports this modification, then looks at the particular
pin on the Game I/O socket that the wire is connected to and checks to see if the
switch is closed.

NOTE: The following procedures may void your computer's warranty. Do not
attempt the next modification (for REV 6 or earlier computers) unless you know
how to solder. The REV 7 modification does not require soldering. If you are
unsure or encounter any difficulty, ask your dealer to make the modification for
you, otherwise proceed at your own risk. Also, be aware that Apple Ile and Ile
keyboards do not have to be modified .

Modifying Revision 6 and earlier computers
This modification requires some physical changes to the Apple computer and

should be done with care. Follow the steps below.

1. Shut off all power to the computer and remove all peripheral cards and
anything plugged into the Game 1/0 socket.

2 . Turn your Apple over so that the metal baseplate is facing up and remove the

180

Shift Key Modification Instructions I 181

four screws below the keyboard, the two screws along the sides and the two screws
in the rear corners. DO NOT REMOVE THE BASEPLATE YET!

3. Carefully lift the baseplate an inch or two. You will see a cable going from the
keyboard to the computer's main circuit board. Note the orientation of the plug on
the ribbon cable and then carefully unplug it from the main computer board.

4. Now you can fully remove the baseplate, which holds the main circuit board,
and place it aside.

5. Take an 18-inch piece of thin wire and strip off about 1/4-inch of insulation
from both ends of it. With the computer case still upside down, and the front
(keyboard) closest to you, look in the lower right-hand corner of the keyboard
circuit board and locate the number 42. Next to it should be three solder pads, all in
a straight row.

6. Solder one end of the 18-inch wire to the left-most pad, the one that has the
empty hole. Near the solder connection, tape the wire to the keyboard circuit board
and then point the wire towards the back of the computer.

7. Carefully reassemble the baseplate, not forgetting to plug the keyboard con
nector back into the main computer board.

8. Turn the Apple over (right side up) and insert the free end of the wire intopin4
of the Game 1/0 socket. To orient you properly, when viewing the Game 1/0 socket
from the front, pin 1 is in the lower right-hand corner of the socket, pin 2 is behind
it, etc.

That's it. The modification has been completed and when used with the lower
case software in Chapter 5, will allow your Apple keyboard to behave more like a
typewriter keyboard.

Modifying Revision 7 and later computers
This modification is a little simpler to perform than the one for the earlier model

Apples because it does not require any soldering.

l. Turn off all power to the computer and remove anything that is plugged into
the Game 1/0 socket.

2. Take a 12-inch piece of thin, solid wire and strip off 1/4-inch of insulation
from one end and 3/4-inch of insulation from the other. On the end with the 3/4-
inch of insulation missing, bend the wire into a hook shape.

3. Remove the top cover and locate the keyboard encoder circuit board, which is
underneath the keyboard and connected to it by means of25 long connector pins.

4. The SHIFT key is connected to the second pin from the right as you face the
computer with the keyboard closest to you. Place the hooked wire you prepared in
step 2, around this pin and squeeze it closed tight with a pair of thin pliers. Place
insulating tape over this connection so that none of the other pins come in contact
with this wire or connection.

5. Push the other end of the wire into pin 4 of the Game 1/0 socket. The
modification is complete.

182 I Appendix C

Don't take chances
While both of these modifications are very simple to perform, and are being

used by thousands of people, some people are simply not mechanically inclined. If
you're one of these people with two left hands, go to your dealer or some other
technically knowledgeable person to have the modification done.

-

AppendixD

ADAPfING PROGRAMS 10 WORK WITH
PRO DOS

Many of the programs in this book are designed to steal control away from the
normal input or output routines during the course of their operation. Under DOS
3.3, to do this, all you had to do was place the address of the new input or output
routine in either the input ($38 and $39) or output ($36 and $37) hook and then tell
DOS that you did it by doing a subroutine jump to location $3EA. This technique
will not work under ProDOS.

Installing a new input or output routine is a little more complicated under
ProDOS, because you must place the address of the new routine in one of two
places, depending on how the program is going to be run. If the program is either
going to be activated from the immediate mode or activated by BRUNing it, then
the address of the new routine goes in the same input and output hooks that were
used for DOS 3.3, you just don't do the subroutine jump to $3EA. However, if the
program is going to be activated by BLOADing it and then doing a CALL to the
machine language routine when it is needed, the address of the new routine must
be placed in ProDOS's global page (page $BE). The output routine address in the
global page is stored at $BE30 and $BE31 and is normally set to $FDFO. The input
address on the global page is stored at $BE32 and $BE33 and is normally set to
$FD1B.

The reason for the two different places for storing the address of the 1/0 (input/
output) routines is related to the way ProDOS initializes the values stored in the 1/0
hooks ($36 to $39). If you're BRUNing a program or executing it from the immedi
ate mode, the first thing that ProDOS does is to initialize the values in the 1/0 hooks
by copying the contents of $BE30 to $BE33 into $36 to $39. At that point it
executes your command and runs your machine language program. If your pro
gram stores the new address for the 1/0 hooks in the global page ($BE30 to
$BE33), it will remain there only as long as your program is running. As soon as
your program returns control to whatever program or mode called it, ProDOS
immediately copies the addresses in $36 through $39 back into the global page,
immediately disconnecting the new 1/0 hooks your program just set up. However,
if your machine language program had set up the new 1/0 addresses at $36 through
$39, when ProDOS copied these values back to the global page, it would have
made sure that the new 1/0 addresses remained connected.

The situation is a little different if you're going to operate your program by first
BLOADing it and then doing a CALL to its starting address to activate it. In this
case, things proceed as they did in the previous example except that the CALL

183

184 I Appendix D

command which runs your program is not executed until after the 1/0 routine
addresses are copied back to the global page. Thus, since the global page is where
you want the actresses ultimately stored, your program must put them there itself. If
it stored them in $36 through $39, they'd stay there and never get copied back to the
global page.

If you want to avoid the problem of determining in advance how your program is
going to be activated, you can store the addresses of the new 1/0 routines in both
the zero page locations ($36 through $39) and the global page locations ($BE30
through $BE33). This will allow your program to work both ways, just as it did
under DOS 3.3. To demonstrate how to do this, the SHOW CONTROL program
which makes it possible to see the normally invisible control characters has been
converted for use with ProDOS and is listed here. Compare this with the original
program listed in Chapter 4. Notice that in lines 1330 to 1380 in the ProDOS
version, that the address of the new output routine has been stored in both the zero
page and the global page. You will also notice that the test for DOS has been
eliminated as has the jump to $3EA which is required under DOS 3.3 to connect the
1/0 hooks. The rest of the program remains unchanged. As you can see, the change
to accomodate ProDOS is really minimal.

0036-
BE30-
FDFO-

0300-
0302-
0304-
0307-
0309-

A9 OF
85 36
8D 30
A9 03
85 37

030B- 8D 31
030E- 60

BE

BE

1000 *************************************
1010 *** ***
1020 ***
1030 ***
1040 ***
1050 ***
1060 ***
1070 ***
1080 ***

SHOW CONTROL CHARACTERS
PRODOS VERSION

COPYRIGHT (C) 1984 BY
JULES H. GILDER

ALL RIGHTS RESERVED

1090 *************************************
1100 *
1110 *
1120 *
1130
1140 *
1150 *
1160 *

.OR $300

1170 * EQUATES
1180 *
1190 CSWL
1200 GPCSWL
1210 COUTl
1220 *
1230 *

.EQ $36

.EQ $BE30

.EQ $FDFO

1240 * This section of code sets up the
1250 * output hooks at $36 and $37
1260 * and on the global page so that
1270 * any characters that are being output
1280 * by the computer will first pass
1290 * through this subroutine. With this
1300 * setup, it doesn't matter if the program
1310 * is BRUN or BLOADed and then CALLed.
1320 *
1330
1340
1350
1360
1370
1380
1390
1400 *

LDA #START
STA CSWL
STA GPCSWL
LDA /START
STA CSWL+l
STA GPCSWL+l
RTS

Get START low
byte & save it on
zero and global pages.
Get START high
byte & save it on
zero and global pages .

030F-
0311-
0313-
0314-
0317-
0318-

031B-
031D-
031F-
0321-
0323-
0325-

C9 8D
DO 08
48
20 1B 03
68
4C 25 03

C9 80
90 06
C9 9F
BO 02
49 80
4C FO FD

Adapting Programs To Work With PRODOS I 185

1410 *
1420 * This is the actual start of the
1430 * control character display program.
1440 * Here a check is made to see if the
1450 * character is a Control-M (carriage
1460 *return). If it is, an inverse Mis
1470 * printed followed by a carriage
1480 * return. Otherwise control is passed
1490 * to a routine that checks to see if
1500 * the character is a control character.
1510 *
1520 START
1530
1540
1550
1560
1570
1580 *
1590 *

CMP #$8D
BNE CHKCTRL
PHA
JSR CHKCTRL
PLA
JMP PRINTIT

Is it Cntrl-M?
No, inverse it.
Yes, save it.
To inverse.
Restore it.
Print a carriage

1600 * Here a check is made to see if the
1610 * character in the accumulator is a
1620 * control character. If it's not, it
1630 * is printed as is. If it is, the
1640 * character is converted to inverse and
1650 * then printed.
1660 *

return.

1670 CHKCTRL CMP #$80 See if the accumulator
1680 BCC PRINTIT
1690 CMP #$9F
1700 BCS PRINTIT
1710 EOR #$80
1720 PRINTIT JMP COUTl

contains a
control character.
No, print it.
Yes, inverse it.
Print character.

Finding space for long machine language programs

As with DOS 3.3, short machine language programs under ProDOS can be
stored on page 3 of memory. Long machine language programs, however, are
treated a little differently under Pro DOS than they were under DOS 3. 3. With DOS
3.3, these long programs were usually loaded under HIMEM, which was usually
set at $9600, and then the value of HIMEM was lowered to the starting address of
the machine language program. This protected the machine language program
from being wiped out by strings used in Applesoft programs.

Something similar can be done with ProDOS, but there are some differences. To
begin with, Pro DOS doesn't like HIMEM to have just any old value, but insists that
the value of HIMEM be a multiple of 256. This is not serious, because at the most
you 're only wasting a fraction of a page (256 bytes) of memory. Another problem is
that as more files are opened, ProDOS takes away memory from the upper bound
ary and moves HIMEM down. Thus, while resetting HIMEM will result in an
initially safe location for your machine language code, as more files are opened,
the location where your program is stored is in danger of being over-written.

To overcome this problem, we can make use of a ProDOS subroutine known as
GETBUFR, which is located at $BEF5. This is the subroutine that ProDOS uses to
move HIMEM down and create a safe area to use as a file buffer, and there's no
reason why we can't use it too. To use this routine, all you have to do is determine
how many pages of memory you need and load this number into the accumulator.
With the number of pages in the accumulator, all you have to do then is do a JSR to

186 I Appendix D

GETBUFR. HIMEM is then moved down by that number of pages and a safe hole
in high memory is now created. This safe area is located 4 pages above the new
value of HIMEM. That's because ProDOS needs a lK buffer immediately above
HIMEM. Thus, if the value of HIMEM is at it's normal $9600 and you call the
GETBUFR routine with a 3 in the accumulator (you want to reserve 768 bytes -
three pages - of memory) the new value of HIMEM will be $9300 and your usable
buffer area will begin at $9700.

If everything is okay when you return from the GETBUFR subroutine jump, the
accumulator will contain the high byte of the address of the buffer (the low byte is
always zero). If too many buffers have already been allocated, then on returning
from GETBUFR the Carry bit should be set and the error code number is in the
accumulator. Some programmers have reported a problem with this and found that
in some instances even when an error occurs, the Carry bit is clear. I have not
experienced this problem, but if reports in some magazines are accurate, you
might. To overcome this, you can test the value of the byte in the accumulator to see
if it is equal to $0C, which is the error code for "NO BUFFERS AVAILABLE" .

One more ProDOS subroutine that you will find of interest is the one called
FREBUFR, which is located at $BEF8. If you do a JSR to this routine, it will free
all the buffers and reset the computer to it normal condition .

INDEX

A c
addressing CAPTST 101

indirect indexed 7, 86 cassette duplicator 126
post indexing 7 CHKCOM 157

alarm signal 117, US CHKMEM 153
ampersand 129, 139, 162 CHRGET 129, 132, 133, 135, 140
append CHRGITT 40

Applesoft programs 139 clicker, keyboard l12
bug 140 commands, new Applesoft 151

Appendix A - ASCII Code Conversion Table 177 computed GOSUB 151-153
Appendix B - Applesoft Token List 178 computed Garo 151, 152
Appendix C - Shift Key Modification 180 computed LIST 151
Appendix D - ProDOS Adaptation 183 control characters 72
Applesoft seeing them 72

expanding 150 converting
function keys 168 decimal to hexadecimal 12, 13
keywords · 96, 178 hex/decimal/hex 130, 131
line, how it's stored in memory 21 floating point to integer 132
line counter 21, 22 to lowercase 105
using it 26 to ProDOS 183
line finder 134, 136 copy, cassettes 126
program restorer 145 COUT 5, 18, 56
program sharer 161 COUTI 56, 170
using it 167 CSWL 56, 83
shorthand 96 CURLIN 153
token list 118 custom cursor 83

ASCII code 6, 17, 177
conversion table 177 D
digits 17
lowercase letter 70 decimal numbers

assembler 1, 5
audio feedback l12

entering them 35
decimal to hexadecimal conversion 12, 35
disk spooling 78
double byte PEEK 159

B double byte POKE 156

BASCALC 86
duplicator, cassette 126

BASL 82, 86
BCD numbers 13, 14

E

BELL 111, l12 editor
bell routine 111 Epson printer 58
binary coded decimal 13 EVLNM2 151
borders 26 EVLNUM 153
boxes 26 EXEC 96
branching 15, 40 without a disk 92
BRK 5 expanding Applesoft 150

187

I I

188 /Index

F

F8ROM 133
FAC 132, 151
FACLO 40
FACMO 40
filter routine 71
FIN 40
flags- V 15
flashing

characters 87
mode 6

floating point accumulator
FNDLIN 135, 151

40, 132

formatted text 76
FREBUFR 186
frequency of tone 109-lll
FRMEVL 151, 156
FRMNUM 132, 135
function keys 168

G

game 1/0 connector 102
GDBUFFS 38
GETADR
GETBUFR
GETLN
GETLNI
GETNUM

132, 135, 156, 159
185

31, 32
32,35

133
global page, ProDOS 183
GOTO 152

H

hex/decimal/hex converter 131
hexadecimal numbers 35

entering them 40
hexadecimal to decimal conversion
high bits 6, 92, 97
HIMEM 168, 185

I

illegal line numbers 134
improved message printer 8, 9
in-memory EXEC 92
indexing with an address table
indirect indexed addressing
input

buffer 26, 31-33
from other sources 91
hooks 83, 183
routine 96

replacing it 96
inverse video 87

44
7,86

13, 20

J
jump table 44
jumping 15, 45

K

keyboard 29, 30
read routine 29-31
clicker 112
macro 96

KEYIN 85, 89, 102
KSWL 83

L

laser blasts
laser swoops
LIFO 45

114, 115
114, 115

line finder, Applesoft 134, 136
line numbers, illegal 134
LINGET 135, 151-153
LINKSET 142
LINNUM 13, 14, 20, 132, 135, 151, 157, 159
LINPRT 20, 23, 133
LIST 151
LIST2 152
locate program lines 134
long message printer 9, 10
lowercase

adapters

conversion
filter 71

70, 101, 102

105

input driver 102
letters 101

displaying them 101
entering them 101
recognizing them 101

text 70

M

machine gun noise
macro 97
menu program

alphabetic
message printer
monitor ROM
MONZ 136

112

42-44
49

4, 6, 7, 10
133

Morse code 121
multiplication by ten36

N

NEW 162
new Applesoft commands 151
next line pointer 22, 23
nibbles 17
number conversion 12, 13
numbers

decimal 12
hexadecimal 3

numeric key pad 88, 91
NXTLST 152

0

62, 85 OUTPORT
output

hooks
routines
to disk

57, 58,62 , 70,84
56

78

p

page formatter 76
parallel printers 57
PEEKing two bytes 159
POKEing two bytes 156
post indexing 7
PRBYTE 14, 132
PRERR 35
printer

Epson 58
interface card 58, 85
modes 58, 61
patch 57,58
Epson 58, 61
screen 84
setup 61, 62
tabbing driver 65, 66

Pro DOS 183
finding storage space 185
global page 183
program adaptation 183

programs
Alphabetic Menu Program
Apple Bell Routine lll
Applesoft Append 142

50

Applesoft Function Keys
Applesoft Line Counter
Applesoft Line Finder
Applesoft Program Sharer

171
24

137
164

Applesoft Shorthand 98
Cassette Duplicator 127

Index I 189

p

Computed Garo, GOSUB and LIST 153
Custom Cursor 83
Double Byte PEEK 160
Double Byte POKE 157
Epson Printer Patch 59
Hex/Decimal/Hex Converter 130
Improved Message Printer 8
Improved Read Keyboard Routine 31
Improved Text Input Routine 39
In-Memory EXEC Simulator 93
Input A Hex Number Routine 42
Input Integer Routine No. 1 37
Input Integer Routine No. 2 39
Keyboard Clicker 113
Laser Swoop 1 116
Laser Swoop 2 117
Long Message Printer No. 1 10
Long Message printer No. 2 11
Lower Case Letter Filter 71
Lowercase Input Driver 127
Machine Gun Noise 115
Morse Code Generator 124
Numeric Key Pad 90
Output A Decimal Number #1 15
Output A Decimal Number #2 19
Output A Decimal Number #3 21
Page Formatter 77
Parallel Printer Patch 57
Print to Disk Spooler 79
Printer Setup Program 63
Printer Tabbing Driver 66
&RESTORE 147
Sample Menu Program 46
Screen Printer 86
Screen Reverser 75
Show Control Characters 73
Show Control Characters ProDOS Version 184
Simple Message Printer 6, 7
Simple Read Keyboard Routine 30
Simple Tone Routine 110
Siren Program 118
Text Input Routine 32
Title Box 27
Touch Tone Simulator 120

pseudo op codes 2, 5
.AS 2, 6
.DA 3
.EQ 2, 5
.HS 3, 5
.OR 2
.TA 2

190 /Index

Q
QINT

R

40, 132

RDKEY 31, 87
relative branches 40

40 relocatable program
&RES1DRE 145
restoring Appesoft programs

s
screen printer 84
screen reverser 74
SETKBD 93
shared programs 161

interaction 163
one calling the other 164

SHIFT key 101

145

modification 102, 103, 180
for revision 6 and earlier Apples
for revision 7 and later Apples

shorthand 96
siren program 117, 118
simultaneous sound and graphics
sound effects 108, 112
speaker 108

toggling
spooling to disk
stack 12, 102

108, 112-114, 117
78

jumping to subroutines 45
pointer 102

swooping laser 114, 115
SYNCHR 140, 145, 151, 157

115

180
181

T

tab past 40 columns 65
text 76

input routine 32 , 33
token 129

GOSUB
ooro

153
152

list
POKE
PRINT

178
157
22

RES1DRE 145
table 96

tone generator 109
Touch-Tone

keypad 119
simulator 118-120

u
USR 129, 159, 161, 164

jump locations 159
number passing 159

v
Vflag 15
visual effects

w
WAIT 111

115

1

$19.9'5

Nov.- That You Know
APPLE .•SSEMBLY LANGUAGE:

. What Can You Do With It?
Here is an easy-to-understand collection of programs to help you unlock the power

. and speed of assembly language programming on your Apple II computer. You've
spent a great deal of time learning the various assembly language commands,
what they do and how. Now you can put these commands together to produce fast,
powerful programs that let you greatly expand the capabilities of your computer.

You 'II find out how you can let your Apple do things it
couldn't do before! With this book you'll discover how to:
• Hold two Applesoft BASIC programs in memory simultaneously and switch be

tween them at will, even under program control.
• Reverse the way text is displayed on a video monitor to show black characters on

a white background.
• Add new commands to Applesoft BASIC so that it will be more powerful and

easier to use.
• Convert a section of the normal keyboard into a numeric keypad for super-fast

entry of numerical data.
• Use a custom-developed form of shorthand that automatically types out one or

more BASIC commands when you press just one or two keys.
• Permit older versions of the Apple computer to recognize lowercase letters, even

in BASIC programs.
•Restore Applesoft programs that have been accidentally erased.

All this and much more is possible with the machine language programs described
and listed here. And it's all done exclusively with software, no additional hardware
or peripheral devices are required.

If you 're worried about getting confused and not understanding the operation of
these powerful programs, don't. All 55 programs in this book are fully documented
with detailed descriptions in the text of how and why the programs work, and line
by-line descriptions of each step in every assembly language program listed.

You will find this to be an invaluable source-book of ideas, techniques and
routines that can be incorporated into your own programs.

ABOUT THE AUTHOR

Jules H. Gilder is a pioneer in the use of personal computers. He was
one of a handful of people to purchase and use the original Apple I
computer, on which he taught himself 6502 assembly language pro
gramming. Since then he has taught hundreds of people both BASIC
and assembly language programming in courses at New York Univer
sity and private seminars. He has been editor-in-chief of Personal
Computing magazine, vice president of software for Children's Televi
sion Workshop and editorial director of Hayden Software. He is the
author of seven other books covering integrated software, and sci
ence and engineering programs in Pascal and BASIC for the Apple
and IBM PC computers.

DataCraft, Inc.
2068 - ?9th Street
Brooklyn, NY 11214 ISBN 0-933913-00-1

	Table of Contents
	1. Before you get started
	2. Getting information out of your computer
	3. Getting information into your computer
	4. Stealing control of the output
	5. Stealing control of the input
	6. Using sound in your programs
	7. Learning to use the ampersand
	8 Expanding Applesoft BASIC
	A. ASCII code conversion table
	B. Applesoft token list
	C. Shift key modification for Apple II and II Plus computers
	D. Adapting programs to work with ProDOS
	Index

